Coupled-mode theory for film-coupled plasmonic nanocubes

被引:45
|
作者
Bowen, Patrick T. [1 ]
Smith, David R.
机构
[1] Duke Univ, Ctr Metamat & Integrated Plasmon, Durham, NC 27708 USA
关键词
NANOPARTICLE; RESONANCE;
D O I
10.1103/PhysRevB.90.195402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Planar metallic nanoparticles separated by nanoscale distances from a metal film support unique plasmonic resonances useful for controlling a wide range of photodynamic processes. The fundamental resonance of a film-coupled planar nanoparticle arises from a transmission-line mode localized between nanoparticle and film, whose properties can be roughly approximated by closed form expressions similar to those used in patch antenna theory. The insight provided by the analytical expressions, and the potential of achieving similar closed-form expressions for a range of plasmonic phenomenon such as spasing, fluorescence enhancement, and perfect absorbers, motivates a more detailed study of the film-coupled patch. Here, we present an expanded analytical analysis of the plasmonic patch geometry, applying an eigenmode expansion method to arrive at a more accurate description of the field distribution underneath a film-coupled plasmonic nanocube. The fields corresponding to the inhomogeneous Maxwell's equations are expanded in a set of lossless waveguide eigenmodes. Radiation damping and Ohmic losses are then perturbatively taken into account by considering an equivalent surface impedance. We find that radiative loss couples the lossless eigenmodes, leading to discernible features in the scattering spectra of the nanocubes. The method presented can be further applied to the case of point source excitations, in which accounting for all potential eigenmodes becomes essential.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Surface plasmon-coupled emission on plasmonic Bragg gratings
    Toma, Mana
    Toma, Koji
    Adam, Pavel
    Homola, Jiri
    Knoll, Wolfgang
    Dostalek, Jakub
    OPTICS EXPRESS, 2012, 20 (13): : 14042 - 14053
  • [22] Controlling the quantum yield of a dipole emitter with coupled plasmonic modes
    Vandenbem, C.
    Brayer, D.
    Froufe-Perez, L. S.
    Carminati, R.
    PHYSICAL REVIEW B, 2010, 81 (08)
  • [23] Optical Impedance Matching Using Coupled Plasmonic Nanoparticle Arrays
    Spinelli, P.
    Hebbink, M.
    de Waele, R.
    Black, L.
    Lenzmann, F.
    Polman, A.
    NANO LETTERS, 2011, 11 (04) : 1760 - 1765
  • [24] Plasmonic Coupled Modes in a Metal-Dielectric Periodic Nanostructure
    Coello, Victor
    Abdulkareem, Mas-ud A.
    Garcia-Ortiz, Cesar E.
    Sosa-Sanchez, Citlalli T.
    Tellez-Limon, Ricardo
    Pena-Gomar, Marycarmen
    MICROMACHINES, 2023, 14 (09)
  • [25] Gold nanoparticle-coupled liposomes for enhanced plasmonic biosensing
    Yang, Zhengdong
    Malinick, Alexander S.
    Yang, Tiantian
    Cheng, Wei
    Cheng, Quan
    SENSORS AND ACTUATORS REPORTS, 2020, 2 (01)
  • [26] The synergistic enhancement of silver nanocubes and graphene oxide on surface plasmon-coupled emission
    Xie, Kai-Xin
    Xu, Lin-Tao
    Zhai, Yan-Yun
    Wang, Zheng-Chuang
    Chen, Min
    Pan, Xiao-Hui
    Cao, Shuo-Hui
    Li, Yao-Qun
    TALANTA, 2019, 195 : 752 - 756
  • [27] Exploring Coupled Plasmonic Nanostructures in the Near Field by Photoemission Electron Microscopy
    Yu, Han
    Sun, Quan
    Ueno, Kosei
    Oshikiri, Tomoya
    Kubo, Atsushi
    Matsuo, Yasutaka
    Misawa, Hiroaki
    ACS NANO, 2016, 10 (11) : 10373 - 10381
  • [28] Plasmonic Properties of Coupled Metal Wires in the Cluster with Triangular or Square Configuration
    Stognii, Nadiia P.
    Sakhnenko, Nataliya K.
    2015 IEEE 35TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2015, : 112 - 115
  • [29] Dependence of Plasmonic Properties on Electron Densities for Various Coupled Au Nanostructures
    Liow, Chihao
    Meng, Fanben
    Chen, Xiaodong
    Li, Shuzhou
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (47) : 27531 - 27538
  • [30] Gap Plasmon Resonance in a Suspended Plasmonic Nanowire Coupled to a Metallic Substrate
    Miyata, Masashi
    Holsteen, Aaron
    Nagasaki, Yusuke
    Brongersma, Mark L.
    Takahara, Junichi
    NANO LETTERS, 2015, 15 (08) : 5609 - 5616