Conjecture on the interlacing of zeros in complex Sturm-Liouville problems

被引:66
作者
Bender, CM [1 ]
Boettcher, S
Savage, VM
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[2] Emory Univ, Dept Phys, Atlanta, GA 30322 USA
关键词
D O I
10.1063/1.1288247
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The zeros of the eigenfunctions of self-adjoint Sturm-Liouville eigenvalue problems interlace. For these problems interlacing is crucial for completeness. For the complex Sturm-Liouville problem associated with the Schrodinger equation for a non-Hermitian PT-symmetric Hamiltonian, completeness and interlacing of zeros have never been examined. This paper reports a numerical study of the Sturm-Liouville problems for three complex potentials, the large-N limit of a -(ix)(N) potential, a quasiexactly-solvable -x(4) potential, and an ix(3) potential. In all cases the complex zeros of the eigenfunctions exhibit a similar pattern of interlacing and it is conjectured that this pattern is universal. Understanding this pattern could provide insight into whether the eigenfunctions of complex Sturm-Liouville problems form a complete set. (C) 2000 American Institute of Physics. [S0022-2488(00)04309-7].
引用
收藏
页码:6381 / 6387
页数:7
相关论文
共 17 条
[1]   SUSY quantum mechanics with complex superpotentials and real energy spectra [J].
Andrianov, AA ;
Ioffe, MV ;
Cannata, F ;
Dedonder, JP .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (17) :2675-2688
[2]   A new PT-symmetric complex Hamiltonian with a real spectrum [J].
Bagchi, B ;
Roychoudhury, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (01) :L1-L3
[3]   Complex periodic potentials with real band spectra [J].
Bender, CM ;
Dunne, GV ;
Meisinger, PN .
PHYSICS LETTERS A, 1999, 252 (05) :272-276
[4]   ANALYTIC CONTINUATION OF EIGENVALUE PROBLEMS [J].
BENDER, CM ;
TURBINER, A .
PHYSICS LETTERS A, 1993, 173 (06) :442-446
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[7]   Variational ansatz for PJ-symmetric quantum mechanics [J].
Bender, CM ;
Cooper, F ;
Meisinger, PN ;
Savage, VM .
PHYSICS LETTERS A, 1999, 259 (3-4) :224-231
[8]   Quasi-exactly solvable quartic potential [J].
Bender, CM ;
Boettcher, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (14) :L273-L277
[9]  
BENDER CM, 1999, J PHYS A, V32, P1
[10]   Schrodinger operators with complex potential but real spectrum [J].
Cannata, F ;
Junker, G ;
Trost, J .
PHYSICS LETTERS A, 1998, 246 (3-4) :219-226