Snakes and Ladders: Localized Solutions of Plane Couette Flow

被引:128
作者
Schneider, Tobias M. [1 ]
Gibson, John F. [2 ]
Burke, John [3 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[3] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
关键词
EXACT COHERENT STRUCTURES; EDGE STATES; PIPE-FLOW; TURBULENCE; PATTERNS; BIFURCATION; TRANSITION; SYSTEMS;
D O I
10.1103/PhysRevLett.104.104501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate the existence of a large number of exact solutions of plane Couette flow, which share the topology of known periodic solutions but are localized in one spatial dimension. Solutions of different size are organized in a snakes-and-ladders structure strikingly similar to that observed for simpler pattern-forming partial differential equations. These new solutions are a step towards extending the dynamical systems view of transitional turbulence to spatially extended flows.
引用
收藏
页数:4
相关论文
共 27 条
[1]   Computational study of turbulent laminar patterns in Couette flow [J].
Barkley, D ;
Tuckerman, LS .
PHYSICAL REVIEW LETTERS, 2005, 94 (01) :1-4
[2]   Spatially localized binary-fluid convection [J].
Batiste, Oriol ;
Knobloch, Edgar ;
Alonso, Arantxa ;
Mercader, Isabel .
JOURNAL OF FLUID MECHANICS, 2006, 560 :149-158
[3]   SNAKES, LADDERS, AND ISOLAS OF LOCALIZED PATTERNS [J].
Beck, Margaret ;
Knobloch, Juergen ;
Lloyd, David J. B. ;
Sandstede, Bjoern ;
Wagenknecht, Thomas .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (03) :936-972
[4]   Eckhaus instability and homoclinic snaking [J].
Bergeon, A. ;
Burke, J. ;
Knobloch, E. ;
Mercader, I. .
PHYSICAL REVIEW E, 2008, 78 (04)
[5]   Spatially localized states in natural doubly diffusive convection [J].
Bergeon, A. ;
Knobloch, E. .
PHYSICS OF FLUIDS, 2008, 20 (03)
[6]   Homoclinic snaking: Structure and stability [J].
Burke, John ;
Knobloch, Edgar .
CHAOS, 2007, 17 (03)
[7]   Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics [J].
Champneys, AR .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 112 (1-2) :158-186
[8]   Exponential asymptotics of localised patterns and snaking bifurcation diagrams [J].
Chapman, S. J. ;
Kozyreff, G. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) :319-354
[9]   SUBCRITICAL TRANSITION TO TURBULENCE IN PLANE COUETTE-FLOW [J].
DAVIAUD, F ;
HEGSETH, J ;
BERGE, P .
PHYSICAL REVIEW LETTERS, 1992, 69 (17) :2511-2514
[10]   Localized edge states in plane Couette flow [J].
Duguet, Yohann ;
Schlatter, Philipp ;
Henningson, Dan S. .
PHYSICS OF FLUIDS, 2009, 21 (11) :1-4