A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance

被引:473
作者
Jang, Cholsoon [1 ,2 ]
Oh, Sungwhan F. [3 ]
Wada, Shogo [1 ]
Rowe, Glenn C. [2 ,7 ]
Liu, Laura [2 ]
Chan, Mun Chun [2 ]
Rhee, James [2 ,4 ]
Hoshino, Atsushi [1 ]
Kim, Boa [1 ]
Ibrahim, Ayon [1 ]
Baca, Luisa G. [2 ]
Kim, Esl [2 ]
Ghosh, Chandra C. [2 ]
Parikh, Samir M. [2 ]
Jiang, Aihua [2 ]
Chu, Qingwei [1 ]
Forman, Daniel E. [5 ]
Lecker, Stewart H. [2 ]
Krishnaiah, Saikumari [1 ]
Rabinowitz, Joshua D. [6 ]
Weljie, Aalim M. [1 ]
Baur, Joseph A. [1 ]
Kasper, Dennis L. [3 ]
Arany, Zoltan [1 ]
机构
[1] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA
[2] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Boston, MA 02215 USA
[3] Harvard Univ, Sch Med, Dept Microbiol & Immunobiol, Boston, MA USA
[4] Massachusetts Gen Hosp, Dept Anesthesia Crit Care & Pain Med, Boston, MA 02114 USA
[5] Univ Pittsburgh, Dept Med, Pittsburgh, PA USA
[6] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[7] Univ Alabama Birmingham, Dept Med, Birmingham, AL 35294 USA
基金
美国国家卫生研究院;
关键词
PGC-1-ALPHA; MUSCLE; EXPRESSION; CAPACITY; PLASMA; RISK;
D O I
10.1038/nm.4057
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear(1-3). Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species(4), a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1 alpha; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1 alpha to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.
引用
收藏
页码:421 / +
页数:9
相关论文
共 25 条
[1]  
ABBOTT NJ, 1992, J CELL SCI, V103, P23
[2]   HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α [J].
Arany, Zoltan ;
Foo, Shi-Yin ;
Ma, Yanhong ;
Ruas, Jorge L. ;
Bommi-Reddy, Archana ;
Girnun, Geoffrey ;
Cooper, Marcus ;
Laznik, Dina ;
Chinsomboon, Jessica ;
Rangwala, Shamina M. ;
Baek, Kwan Hyuck ;
Rosenzweig, Anthony ;
Spiegelman, Bruce M. .
NATURE, 2008, 451 (7181) :1008-U8
[3]   The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle [J].
Arany, Zoltan ;
Lebrasseur, Nathan ;
Morris, Carl ;
Smith, Eric ;
Yang, Wenli ;
Ma, Yanhong ;
Chin, Sherry ;
Spiegelman, Bruce M. .
CELL METABOLISM, 2007, 5 (01) :35-46
[4]  
AVOGARO A, 1989, J LIPID RES, V30, P1811
[5]   The many roles of PGC-1α in muscle - recent developments [J].
Chan, Mun Chun ;
Arany, Zolt .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2014, 63 (04) :441-451
[6]   Paradoxical effects of increased expression of PGC-1α on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism [J].
Choi, Cheol Soo ;
Befroy, Douglas E. ;
Codella, Roberto ;
Kim, Sheene ;
Reznick, Richard M. ;
Hwang, Yu-Jin ;
Liu, Zhen-Xiang ;
Lee, Hui-Young ;
Distefano, Alberto ;
Samuel, Varman T. ;
Zhang, Dongyan ;
Cline, Gary W. ;
Handschin, Christoph ;
Lin, Jiandie ;
Petersen, Kitt F. ;
Spiegelman, Bruce M. ;
Shulman, Gerald I. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (50) :19926-19931
[7]   TGFβ is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells [J].
Darland D.C. ;
D'amore P.A. .
Angiogenesis, 2001, 4 (1) :11-20
[8]   Analysis of Skeletal Muscle Gene Expression Patterns and the Impact of Functional Capacity in Patients With Systolic Heart Failure [J].
Forman, Daniel E. ;
Daniels, Karla M. ;
Cahalin, Lawrence P. ;
Zavin, Alexandra ;
Allsup, Kelly ;
Cao, Peirang ;
Santhanam, Mahalakshmi ;
Joseph, Jacob ;
Arena, Ross ;
Lazzari, Antonio ;
Schulze, P. Christian ;
Lecker, Stewart H. .
JOURNAL OF CARDIAC FAILURE, 2014, 20 (06) :422-430
[9]   Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes [J].
Giesbertz, Pieter ;
Padberg, Inken ;
Rein, Dietrich ;
Ecker, Josef ;
Hoefle, Anja S. ;
Spanier, Britta ;
Daniel, Hannelore .
DIABETOLOGIA, 2015, 58 (09) :2133-2143
[10]   Vascular endothelial growth factor B controls endothelial fatty acid uptake [J].
Hagberg, Carolina E. ;
Falkevall, Annelie ;
Wang, Xun ;
Larsson, Erik ;
Huusko, Jenni ;
Nilsson, Ingrid ;
van Meeteren, Laurens A. ;
Samen, Erik ;
Lu, Li ;
Vanwildemeersch, Maarten ;
Klar, Joakim ;
Genove, Guillem ;
Pietras, Kristian ;
Stone-Elander, Sharon ;
Claesson-Welsh, Lena ;
Yla-Herttuala, Seppo ;
Lindahl, Per ;
Eriksson, Ulf .
NATURE, 2010, 464 (7290) :917-U136