Determination of COPD severity from chest CT images using deep transfer learning network

被引:4
作者
Polat, Ozlem [1 ]
Salk, Ismail [2 ]
Dogan, Omer Tamer [3 ]
机构
[1] Sivas Cumhuriyet Univ, Fac Technol, Dept Mechatron Engn, Sivas, Turkey
[2] Sivas Cumhuriyet Univ, Fac Med, Dept Radiol, Sivas, Turkey
[3] Sivas Cumhuriyet Univ, Fac Med, Dept Chest Dis, Sivas, Turkey
关键词
COPD severity classification; Convolutional neural networks; Transfer learning; Inception-V3; STATEMENT; DISEASE;
D O I
10.1007/s11042-022-12801-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of this study is to present a solution to the problem of detecting the severity of Chronic Obstructive Pulmonary Disease (COPD) from chest CT images using deep transfer learning network. The study has a novelty in terms of classifying the severity of COPD with machine learning methods for the first time in the literature. Transfer learning has been preferred because of its proven performance in image analysis and classification. In this study, a dataset containing a total of 1815 CT images from 121 patients with moderate, severe and very severe COPD was used. Lung parenchyma was first segmented from CT images using HSV color space thresholding. Then Inception-V3 model was trained and tested on the segmented image dataset for COPD severity classification. The tests were repeated 10 times. The proposed model was able to detect the severity level of COPD with an average accuracy of 96.79% and a maximum of 97.98%. The classification result proved that the severity of COPD can be classified with very high performance. Thus, the applied transfer learning is promising in medical sciences and can assist to radiologists in making quick and accurate decisions.
引用
收藏
页码:21903 / 21917
页数:15
相关论文
共 32 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
Ahmed J, 2020, BILDVERARBEITUNG MED, DOI [10.1007/978-3-658-29267-6_8arXiv:2001.01100, DOI 10.1007/978-3-658-29267-6_8ARXIV:2001.01100]
[3]   A prediction model for COPD readmissions: catching up, catching our breath, and improving a national problem [J].
Amalakuhan, Bravein ;
Kiljanek, Lukasz ;
Parvathaneni, Arvin ;
Hester, Michael ;
Cheriyath, Pramil ;
Fischman, Daniel .
JOURNAL OF COMMUNITY HOSPITAL INTERNAL MEDICINE PERSPECTIVES, 2012, 2 (01)
[4]   An official American Thoracic Society/European Respiratory Society statement: research questions in COPD [J].
Celli, Bartolome R. ;
Decramer, Marc ;
Wedzicha, Jadwiga A. ;
Wilson, Kevin C. ;
Agusti, Alvar A. ;
Criner, Gerard J. ;
MacNee, William ;
Make, Barry J. ;
Rennard, Stephen I. ;
Stockley, Robert A. ;
Vogelmeier, Claus ;
Anzueto, Antonio ;
Au, David H. ;
Barnes, Peter J. ;
Burgel, Pierre-Regis ;
Calverley, Peter M. ;
Casanova, Ciro ;
Clini, Enrico M. ;
Cooper, Christopher B. ;
Coxson, Harvey O. ;
Dusser, Daniel J. ;
Fabbri, Leonardo M. ;
Fahy, Bonnie ;
Ferguson, Gary T. ;
Fisher, Andrew ;
Fletcher, Monica J. ;
Hayot, Maurice ;
Hurst, John R. ;
Jones, Paul W. ;
Mahler, Donald A. ;
Maltais, Francois ;
Mannino, David M. ;
Martinez, Fernando J. ;
Miravitlles, Marc ;
Meek, Paula M. ;
Papi, Alberto ;
Rabe, Klaus F. ;
Roche, Nicolas ;
Sciurba, Frank C. ;
Sethi, Sanjay ;
Siafakas, Nikos ;
Sin, Don D. ;
Soriano, Joan B. ;
Stoller, James K. ;
Tashkin, Donald P. ;
Troosters, Thierry ;
Verleden, Geert M. ;
Verschakelen, Johny ;
Vestbo, Jorgen ;
Walsh, John W. .
EUROPEAN RESPIRATORY REVIEW, 2015, 24 (136) :159-172
[5]  
Chollet F., 2015, Keras
[6]   A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models [J].
Christodoulou, Evangelia ;
Ma, Jie ;
Collins, Gary S. ;
Steyerberg, Ewout W. ;
Verbakel, Jan Y. ;
Van Calster, Ben .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2019, 110 :12-22
[7]   A machine learning-based approach to prognostic analysis of thoracic transplantations [J].
Delen, Dursun ;
Oztekin, Asil ;
Kong, Zhenyu .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2010, 49 (01) :33-42
[8]   Identification of COPD From Multi-View Snapshots of 3D Lung Airway Tree via Deep CNN [J].
Du, Ran ;
Qi, Shouliang ;
Feng, Jie ;
Xia, Shuyue ;
Kang, Yan ;
Qian, Wei ;
Yao, Yu-Dong .
IEEE ACCESS, 2020, 8 :38907-38919
[9]   An introduction to ROC analysis [J].
Fawcett, Tom .
PATTERN RECOGNITION LETTERS, 2006, 27 (08) :861-874
[10]  
Ganesan P, 2014, 2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICCICCT), P101, DOI 10.1109/ICCICCT.2014.6992938