Extremal functions for the sharp L2 -: Nash inequality

被引:6
作者
Humbert, E [1 ]
机构
[1] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
关键词
D O I
10.1007/s00526-003-0265-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give geornetrical conditions under which there exist extremal functions for the sharp L-2-Nash inequality.
引用
收藏
页码:21 / 44
页数:24
相关论文
共 10 条
[1]   On the best Sobolev inequality [J].
Aubin, T ;
Li, YY .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (04) :353-387
[2]  
Aubin T., 1998, Some Nonlinear Problems in Riemannian Geometry
[3]  
Carlen E., 1993, Int. Math. Res. Not., V1993, P213, DOI DOI 10.1155/S1073792893000224
[4]   Extremal functions for optimal Sobolev inequalities on compact manifolds [J].
Djadli, Z ;
Druet, O .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 12 (01) :59-84
[5]  
Druet O, 1999, INT MATH RES NOTICES, V1999, P735
[6]   The best constants problem in Sobolev inequalities [J].
Druet, O .
MATHEMATISCHE ANNALEN, 1999, 314 (02) :327-346
[7]   From best constants to critical functions [J].
Hebey, E ;
Vaugon, M .
MATHEMATISCHE ZEITSCHRIFT, 2001, 237 (04) :737-767
[8]  
HEBEY E, 1999, LECT NOTES, V5
[9]  
Hebey E., 1996, Ann. Inst. H. Poincare-Anal. non-lineaire, V13, P57
[10]   Best constants in the L2-Nash inequality [J].
Humbert, E .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :621-646