Identity-based encryption from the Weil pairing

被引:4333
作者
Boneh, D [1 ]
Franklin, M
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
关键词
identity-based encryption; bilinear maps; Weil pairing; Tate pairing; elliptic curve cryptography; escrow ElGamal;
D O I
10.1137/S0097539701398521
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a fully functional identity-based encryption (IBE) scheme. The scheme has chosen ciphertext security in the random oracle model assuming a variant of the computational Diffie-Hellman problem. Our system is based on bilinear maps between groups. The Weil pairing on elliptic curves is an example of such a map. We give precise definitions for secure IBE schemes and give several applications for such systems.
引用
收藏
页码:586 / 615
页数:30
相关论文
共 46 条
  • [21] Gennaro R, 1999, LECT NOTES COMPUT SC, V1592, P295
  • [22] Robust and efficient sharing of RSA functions
    Gennaro, R
    Rabin, T
    Jarecki, S
    Krawczyk, H
    [J]. JOURNAL OF CRYPTOLOGY, 2000, 13 (02) : 273 - 300
  • [23] Goldreich O, 1998, LECT NOTES COMPUT SC, V1462, P153, DOI 10.1007/BFb0055726
  • [24] PROBABILISTIC ENCRYPTION
    GOLDWASSER, S
    MICALI, S
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1984, 28 (02) : 270 - 299
  • [25] HUHNLEIN D, 2000, LNCS, V2012, P275
  • [26] Joux A, 2002, LECT NOTES COMPUT SC, V2369, P20
  • [27] Joux A, 2000, LECT NOTES COMPUT SC, V1838, P385
  • [28] JOUX A, 2001, SEPARATING DECISION
  • [29] Lang S., 1973, ELLIPTIC FUNCTIONS
  • [30] MAURER UM, 1991, LECT NOTES COMPUT SC, V547, P498