Dynamics of vortices with magnetic impurities

被引:18
作者
Cockburn, Alexander [1 ]
Krusch, Steffen [2 ]
Muhamed, Abera A. [2 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7FS, Kent, England
关键词
VORTEX; SCATTERING;
D O I
10.1063/1.4984980
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the dynamics of Bogomolny-Prasad-Sommerfield (BPS) vortices in the presence of magnetic impurities taking the form of axially symmetric localised lumps and delta-functions. We present numerical results for vortices on flat space, as well as exact results for vortices on hyperbolic space in the presence of delta-function impurities. In fact, delta-function impurities of appropriate strength can be captured within the moduli space approximation by keeping one or more of the vortices fixed. We also show that previous work on vortices on the 2-sphere extends naturally to the inclusion of delta-function impurities. Published by AIP Publishing.
引用
收藏
页数:15
相关论文
共 27 条
[1]   Ricci magnetic geodesic motion of vortices and lumps [J].
Alqahtani, L. S. ;
Speight, J. M. .
JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 :556-574
[2]   The dynamics of vortices on S2 near the Bradlow limit [J].
Baptista, JM ;
Manton, NS .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (08) :3495-3508
[3]   CLASSICAL VORTEX SOLUTION OF ABELIAN HIGGS MODEL [J].
VEGA, HJD ;
SCHAPOSNIK, FA .
PHYSICAL REVIEW D, 1976, 14 (04) :1100-1106
[4]   Adiabatic Limit and the Slow Motion of Vortices in a Chern-Simons-Schrodinger System [J].
Demoulini, Sophia ;
Stuart, David .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (02) :597-632
[5]   Magnetic impurity inspired Abelian Higgs vortices [J].
Han, Xiaosen ;
Yang, Yisong .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (02) :1-19
[6]   Topologically stratified energy minimizers in a product Abelian field theory [J].
Han, Xiaosen ;
Yang, Yisong .
NUCLEAR PHYSICS B, 2015, 898 :605-626
[7]  
Jaffe A.M., 1980, Progress in Physics, V2
[8]   Schrodinger-Chern-Simons vortex dynamics [J].
Krusch, S ;
Sutcliffe, P .
NONLINEARITY, 2006, 19 (07) :1515-1534
[9]   Exact moduli space metrics for hyperbolic vortex polygons [J].
Krusch, S. ;
Speight, J. M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
[10]   Analytic vortex solutions on compact hyperbolic surfaces [J].
Maldonado, Rafael ;
Manton, Nicholas S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (24)