Five periodic solutions for a class of subquadratic second-order even Hamiltonian systems

被引:1
作者
Ou, Hua-Xin [1 ]
Li, Chun [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian systems; Periodic solutions; Minimal period; Critical point; PRESCRIBED MINIMAL PERIOD; LAGRANGIAN SYSTEMS;
D O I
10.1016/j.aml.2022.108219
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a class of second-order subquadratic Hamiltonian systems with even potentials. The existence of at least five periodic solutions are obtained. Especially, two solutions possess the minimal period. The proof is based on the least action principle and the minimax methods in critical point theory. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 15 条
[1]  
AMBROSETTI A, 1987, ANN I H POINCARE-AN, V4, P275
[2]   REMARKS ON FINDING CRITICAL-POINTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (8-9) :939-963
[3]   LAGRANGIAN SYSTEMS IN THE PRESENCE OF SINGULARITIES [J].
CAPOZZI, A ;
GRECO, C ;
SALVATORE, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (01) :125-130
[4]   PERIODIC-SOLUTIONS OF LAGRANGIAN SYSTEMS WITH BOUNDED POTENTIAL [J].
CAPOZZI, A ;
FORTUNATO, D ;
SALVATORE, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 124 (02) :482-494
[5]   HAMILTONIAN TRAJECTORIES HAVING PRESCRIBED MINIMAL PERIOD [J].
CLARKE, FH ;
EKELAND, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (02) :103-116
[6]   PERIODIC-SOLUTIONS WITH PRESCRIBED MINIMAL PERIOD FOR CONVEX AUTONOMOUS HAMILTONIAN-SYSTEMS [J].
EKELAND, I ;
HOFER, H .
INVENTIONES MATHEMATICAE, 1985, 81 (01) :155-188
[7]   SOLUTIONS OF MINIMAL PERIOD FOR A CLASS OF NONCONVEX HAMILTONIAN-SYSTEMS AND APPLICATIONS TO THE FIXED ENERGY PROBLEM [J].
GIRARDI, M ;
MATZEU, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (04) :371-382
[8]   Multiple minimal periodic solutions for subquadratic second-order Hamiltonian systems [J].
Li, Chun .
APPLIED MATHEMATICS LETTERS, 2021, 122
[9]   THE MINIMAL PERIOD PROBLEM OF CLASSICAL HAMILTONIAN-SYSTEMS WITH EVEN POTENTIALS [J].
LONG, YM .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (06) :605-626
[10]   NONLINEAR OSCILLATIONS FOR CLASSICAL HAMILTONIAN-SYSTEMS WITH BI-EVEN SUBQUADRATIC POTENTIALS [J].
LONG, YM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (12) :1665-1671