Nonlinear Sampled-Data Stabilization of Dynamically Positioned Ships

被引:31
作者
Katayama, Hitoshi [1 ]
机构
[1] Shizuoka Univ, Dept Elect & Elect Engn, Hamamatsu, Shizuoka 4328561, Japan
关键词
Control of ships; Euler approximate model; nonlinear sampled-data control; stabilization; OUTPUT-FEEDBACK CONTROL; DISCRETE-TIME; SYSTEMS;
D O I
10.1109/TCST.2009.2014876
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this brief, we consider the nonlinear sampled-data stabilization of dynamically positioned ships. Using the nonlinear sampled-data control theory developed by Nesic et al. and the integrator backstepping technique for the Euler approximate model, we design semiglobally practically asymptotically (SPA) stabilizing controllers. We design both state feedback and output feedback controllers. We give a numerical example to illustrate the design methods.
引用
收藏
页码:463 / 468
页数:6
相关论文
共 16 条
[1]  
[Anonymous], 1995, OPTIMAL SAMPLED DATA, DOI DOI 10.1007/978-1-4471-3037-6
[2]   A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation [J].
Arcak, M ;
Nesic, D .
AUTOMATICA, 2004, 40 (11) :1931-1938
[3]  
Fossen T.I., 2002, Marine control systems
[4]   Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping [J].
Fossen, TI ;
Grovlen, A .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 1998, 6 (01) :121-128
[5]  
Khalil H., 2002, Control of Nonlinear Systems
[6]  
Laila DS, 2006, LECT NOTES CONTR INF, V328, P91, DOI 10.1007/11583592_3
[7]   A separation principle for dynamic positioning of ships: Theoretical and experimental results [J].
Loria, A ;
Fossen, TI ;
Panteley, E .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2000, 8 (02) :332-343
[8]   Stabilization of sampled-data nonlinear systems via backstepping on their Euler approximate model [J].
Nesic, D. ;
Teel, A. R. .
AUTOMATICA, 2006, 42 (10) :1801-1808
[9]   Lyapunov-based continuous-time nonlinear controller redesign for sampled-data implementation [J].
Nesic, D ;
Grüne, L .
AUTOMATICA, 2005, 41 (07) :1143-1156
[10]   Formulas relating K L stability estimates of discrete-time and sampled-data nonlinear systems [J].
Nesic, D ;
Teel, AR ;
Sontag, ED .
SYSTEMS & CONTROL LETTERS, 1999, 38 (01) :49-60