Data-driven Linear Quadratic Regulation via Semidefinite Programming

被引:19
|
作者
Rotulo, Monica [1 ]
De Persis, Claudio [1 ]
Tesi, Pietro [2 ]
机构
[1] Univ Groningen, ENTEG, NL-9747 AG Groningen, Netherlands
[2] Univ Florence, DINFO, I-50139 Florence, Italy
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Data-driven control; Linear quadratic regulation; Semidefinite programming;
D O I
10.1016/j.ifacol.2020.12.2264
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the finite-horizon linear quadratic regulation problem where the dynamics of the system are assumed to be unknown and the state is accessible. Information on the system is given by a finite set of input-state data, where the input injected in the system is persistently exciting of a sufficiently high order. Using data, the optimal control law is then obtained as the solution of a suitable semidefinite program. The effectiveness of the approach is illustrated via numerical examples. Copyright (C) 2020 The Authors.
引用
收藏
页码:3995 / 4000
页数:6
相关论文
共 50 条
  • [31] Pattern Separation and Prediction via Linear and Semidefinite Programming
    Liu, Xing
    Potra, Florian A.
    STUDIES IN INFORMATICS AND CONTROL, 2009, 18 (01): : 71 - 82
  • [32] Data-Driven Optimal Control of Affine Systems: A Linear Programming Perspective
    Martinelli, Andrea
    Gargiani, Matilde
    Draskovic, Marina
    Lygeros, John
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 3092 - 3097
  • [33] An efficient data-driven distributionally robust MPC leveraging linear programming
    Zhong, Zhengang
    del Rio-Chanona, Ehecatl Antonio
    Petsagkourakis, Panagiotis
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 2022 - 2027
  • [34] Nash Equilibria for Linear Quadratic Discrete-Time Dynamic Games via Iterative and Data-Driven Algorithms
    Nortmann, Benita
    Monti, Andrea
    Sassano, Mario
    Mylvaganam, Thulasi
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (10) : 6561 - 6575
  • [35] On approximating complex quadratic optimization problems via semidefinite programming relaxations
    Anthony Man-Cho So
    Jiawei Zhang
    Yinyu Ye
    Mathematical Programming, 2007, 110 : 93 - 110
  • [36] On-Policy Data-Driven Linear Quadratic Regulator via Combined Policy Iteration and Recursive Least Squares
    Sforni, Lorenzo
    Carnevale, Guido
    Notarnicola, Ivano
    Notarstefano, Giuseppe
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 5047 - 5052
  • [37] Data-driven output regulation control for constrained linear systems
    Xia, Chaoyu
    Dong, Yi
    Wang, Chaoli
    Xu, Shengyuan
    SCIENCE CHINA-INFORMATION SCIENCES, 2025, 68 (03)
  • [38] Data-driven output regulation control for constrained linear systems
    Chaoyu XIA
    Yi DONG
    Chaoli WANG
    Shengyuan XU
    Science China(Information Sciences), 2025, 68 (03) : 338 - 353
  • [39] On approximating complex quadratic optimization problems via semidefinite programming relaxations
    So, AMC
    Zhang, JW
    Ye, YY
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2005, 3509 : 125 - 135
  • [40] Data-Driven Modeling of Linear Dynamical Systems with Quadratic Output in the AAA Framework
    Ion Victor Gosea
    Serkan Gugercin
    Journal of Scientific Computing, 2022, 91