Data-driven Linear Quadratic Regulation via Semidefinite Programming

被引:19
|
作者
Rotulo, Monica [1 ]
De Persis, Claudio [1 ]
Tesi, Pietro [2 ]
机构
[1] Univ Groningen, ENTEG, NL-9747 AG Groningen, Netherlands
[2] Univ Florence, DINFO, I-50139 Florence, Italy
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Data-driven control; Linear quadratic regulation; Semidefinite programming;
D O I
10.1016/j.ifacol.2020.12.2264
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the finite-horizon linear quadratic regulation problem where the dynamics of the system are assumed to be unknown and the state is accessible. Information on the system is given by a finite set of input-state data, where the input injected in the system is persistently exciting of a sufficiently high order. Using data, the optimal control law is then obtained as the solution of a suitable semidefinite program. The effectiveness of the approach is illustrated via numerical examples. Copyright (C) 2020 The Authors.
引用
收藏
页码:3995 / 4000
页数:6
相关论文
共 50 条
  • [1] Stochastic linear-quadratic control via semidefinite programming
    Yao, DD
    Zhang, SZ
    Zhou, XY
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (03) : 801 - 823
  • [2] Data-Driven Optimal Control via Linear Programming: Boundedness Guarantees
    Falconi, Lucia
    Martinelli, Andrea
    Lygeros, John
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (03) : 1683 - 1697
  • [3] A Data-driven Approach for Constrained Infinite-Horizon Linear Quadratic Regulation
    Pang, Bo
    Jiang, Zhong-Ping
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 6010 - 6015
  • [4] Online Data-Driven Control of Nonlinear Systems Using Semidefinite Programming
    Bozza, Augusto
    Martin, Tim
    Cavone, Graziana
    Carli, Raffaele
    Dotoli, Mariagrazia
    Allgoewer, Frank
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3189 - 3194
  • [5] Solving standard quadratic optimization problems via linear, semidefinite and copositive programming
    Bomze, IM
    De Klerk, E
    JOURNAL OF GLOBAL OPTIMIZATION, 2002, 24 (02) : 163 - 185
  • [6] Solving Standard Quadratic Optimization Problems via Linear, Semidefinite and Copositive Programming
    Immanuel M. Bomze
    Etienne De Klerk
    Journal of Global Optimization, 2002, 24 : 163 - 185
  • [7] Data-driven approximate dynamic programming: A linear programming approach
    Sutter, Tobias
    Kamoutsi, Angeliki
    Esfahani, Peyman Mohajerin
    Lygeros, John
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [8] THE DEGREE OF THE CENTRAL CURVE IN SEMIDEFINITE, LINEAR, AND QUADRATIC PROGRAMMING
    Hosten, S.
    Shankar, I
    Torres, A.
    MATEMATICHE, 2021, 76 (02): : 483 - 499
  • [9] Mixed linear and semidefinite programming for combinatorial and quadratic optimization
    Benson, SJ
    Ye, YY
    Zhang, X
    OPTIMIZATION METHODS & SOFTWARE, 1999, 11-2 (1-4): : 515 - 544
  • [10] Mixed linear and semidefinite programming for combinatorial and quadratic optimization
    Appl. Math. and Compl. Sciences, University of Iowa, Iowa City, IA 52242, United States
    不详
    不详
    Optim Method Software, 1 (515-544):