Data-driven Linear Quadratic Regulation via Semidefinite Programming

被引:22
作者
Rotulo, Monica [1 ]
De Persis, Claudio [1 ]
Tesi, Pietro [2 ]
机构
[1] Univ Groningen, ENTEG, NL-9747 AG Groningen, Netherlands
[2] Univ Florence, DINFO, I-50139 Florence, Italy
关键词
Data-driven control; Linear quadratic regulation; Semidefinite programming;
D O I
10.1016/j.ifacol.2020.12.2264
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the finite-horizon linear quadratic regulation problem where the dynamics of the system are assumed to be unknown and the state is accessible. Information on the system is given by a finite set of input-state data, where the input injected in the system is persistently exciting of a sufficiently high order. Using data, the optimal control law is then obtained as the solution of a suitable semidefinite program. The effectiveness of the approach is illustrated via numerical examples. Copyright (C) 2020 The Authors.
引用
收藏
页码:3995 / 4000
页数:6
相关论文
共 33 条
[1]  
Allgower F, 2019, ARXIV PREPRINT ARXIV
[2]  
Anderson B.D.O., 2007, OPTIMAL CONTROL LINE
[3]  
[Anonymous], 1998, LINEAR QUADRATIC REG
[4]   Data-Driven Minimum-Energy Controls for Linear Systems [J].
Baggio, Giacomo ;
Katewa, Vaibhav ;
Pasqualetti, Fabio .
IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03) :589-594
[5]  
BALAKRISHNAN V, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P4030
[6]   Model-based vs data-driven adaptive control: An overview [J].
Benosman, Mouhacine .
International Journal of Adaptive Control and Signal Processing, 2018, 32 (05) :753-776
[7]  
Bertsekas D.P., 2005, Dynamic programming and optimal control, V1
[8]  
Boy S., 1994, LINEAR MATRIX INEQUA
[9]  
BRADTKE SJ, 1994, PROCEEDINGS OF THE 1994 AMERICAN CONTROL CONFERENCE, VOLS 1-3, P3475
[10]  
Busoniu L., 2017, Reinforcement Learning and Dynamic Programming Using Function Approximators