Parameter Estimation for Hidden Markov Models with Intractable Likelihoods

被引:31
|
作者
Dean, Thomas A. [1 ]
Singh, Sumeetpal S. [1 ]
Jasra, Ajay [2 ]
Peters, Gareth W. [3 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117548, Singapore
[3] UCL, Dept Stat Sci, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
approximate Bayesian computation; hidden Markov model; parameter estimation; sequential Monte Carlo; APPROXIMATE BAYESIAN COMPUTATION; STOCHASTIC VOLATILITY; INFERENCE;
D O I
10.1111/sjos.12077
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Approximate Bayesian computation (ABC) is a popular technique for analysing data for complex models where the likelihood function is intractable. It involves using simulation from the model to approximate the likelihood, with this approximate likelihood then being used to construct an approximate posterior. In this paper, we consider methods that estimate the parameters by maximizing the approximate likelihood used in ABC. We give a theoretical analysis of the asymptotic properties of the resulting estimator. In particular, we derive results analogous to those of consistency and asymptotic normality for standard maximum likelihood estimation. We also discuss how sequential Monte Carlo methods provide a natural method for implementing our likelihood-based ABC procedures.
引用
收藏
页码:970 / 987
页数:18
相关论文
共 50 条