MULTISCALE SCHEMES FOR THE BGK-VLASOV-POISSON SYSTEM IN THE QUASI-NEUTRAL AND FLUID LIMITS. STABILITY ANALYSIS AND FIRST ORDER SCHEMES

被引:6
作者
Crouseilles, Nicolas [1 ]
Dimarco, Giacomo [2 ]
Vignal, Marie-Helene [3 ]
机构
[1] Ctr Rech Inria Rennes Bretagne Atlantique, F-35042 Rennes, France
[2] Univ Ferrara, Dept Math & Comp Sci, I-44121 Ferrara, Italy
[3] Univ Toulouse, Inst Math Toulouse, UPS, INSA,UT1,UTM,CNRS,UMR 5219, F-31062 Toulouse, France
关键词
collisional Vlasov-Poisson system; quasi-neutral limit; fluid-dynamic limit; asymptotic preserving schemes; multiscale; stability analysis; ASYMPTOTIC-PRESERVING SCHEME; RUNGE-KUTTA SCHEMES; KINETIC-EQUATIONS; BOLTZMANN-EQUATION; NUMERICAL SCHEMES; MONTE-CARLO; DIFFUSION; PLASMAS; DECOMPOSITION; RELAXATION;
D O I
10.1137/140991558
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the development and the analysis of asymptotically stable and consistent schemes in the joint quasi-neutral and fluid limits for the collisional Vlasov-Poisson system. In these limits, the classical explicit schemes suffer from time step restrictions due to the small plasma period and Knudsen number. To solve this problem, we propose a new scheme stable for choices of time steps independent from the small scale dynamics and with comparable computational cost with respect to standard explicit schemes. In addition, this scheme reduces automatically to consistent discretizations of the underlying asymptotic systems. In this paper, we propose a first order in time scheme, and we perform a relative linear stability analysis to deal with such problems. The framework we propose will permit us to extend this approach to high order schemes in the near future. Finally, we show the capability of the method in dealing with small scales through numerical experiments.
引用
收藏
页码:65 / 95
页数:31
相关论文
共 49 条
  • [11] Chen F. F., 1974, Introduction to plasma physics
  • [12] KINETIC/FLUID MICRO-MACRO NUMERICAL SCHEMES FOR VLASOV-POISSON-BGK EQUATION USING PARTICLES
    Crestetto, Anais
    Crouseilles, Nicolas
    Lemou, Mohammed
    [J]. KINETIC AND RELATED MODELS, 2012, 5 (04) : 787 - 816
  • [13] An asymptotically stable discretization for the Euler-Poisson system in the quasi-neutral limit
    Crispel, P
    Degond, P
    Vignal, MH
    [J]. COMPTES RENDUS MATHEMATIQUE, 2005, 341 (05) : 323 - 328
  • [14] An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit
    Crispel, Pierre
    Degond, Pierre
    Vignal, Marie-Helene
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (01) : 208 - 234
  • [15] Crouseilles N., MULTISCALE SCH UNPUB
  • [16] Asymptotic Preserving schemes for highly oscillatory Vlasov-Poisson equations
    Crouseilles, Nicolas
    Lemou, Mohammed
    Mehats, Florian
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 248 : 287 - 308
  • [17] AN ASYMPTOTIC PRESERVING SCHEME BASED ON A MICRO-MACRO DECOMPOSITION FOR COLLISIONAL VLASOV EQUATIONS: DIFFUSION AND HIGH-FIELD SCALING LIMITS
    Crouseilles, Nicolas
    Lemou, Mohammed
    [J]. KINETIC AND RELATED MODELS, 2011, 4 (02) : 441 - 477
  • [18] Conservative semi-Lagrangian schemes for Vlasov equations
    Crouseilles, Nicolas
    Mehrenberger, Michel
    Sonnendruecker, Eric
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (06) : 1927 - 1953
  • [19] A forward semi-Lagrangian method for the numerical solution of the Vlasov equation
    Crouseilles, Nicolas
    Respaud, Thomas
    Sonnendruecker, Eric
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (10) : 1730 - 1745
  • [20] An asymptotically stable Particle-in-Cell (PIC) scheme for collisionless plasma simulations near quasineutrality
    Degond, Pierre
    Deluzet, Fabrice
    Navoret, Laurent
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 343 (09) : 613 - 618