Modulating the Electronic Structure of Porous Nanocubes Derived from Trimetallic Metal-Organic Frameworks to Boost Oxygen Evolution Reaction Performance

被引:10
作者
Lu, Mengting [1 ]
Yang, Xigaogang [1 ]
Li, Yuwen [1 ]
Zhu, Zhenwang [1 ]
Wu, Yuhang [1 ]
Xu, Hui [2 ]
Gao, Junkuo [1 ]
Yao, Juming [1 ]
机构
[1] Zhejiang Sci Tech Univ, Inst Fiber Based New Energy Mat, Key Lab Adv Text Mat & Mfg Techol, Minist Educ,Sch Mat Sci & Engn, Hangzhou 310018, Zhejiang, Peoples R China
[2] China Jiliang Univ, Coll Mat Sci & Engn, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
electrocatalysis; metal-organic frameworks; nanostructures; oxygen evolution reaction; trimetallic catalyst; ELECTROCATALYSTS; REDUCTION; CATALYSTS; NI; NANOPARTICLES; STORAGE; DESIGN; OXIDES;
D O I
10.1002/asia.201900871
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The preparation of noble metal-free catalysts for water splitting is the key to low-cost, sustainable hydrogen generation. Herein, through a pyrolysis-oxidation process, we prepared a series of Co-Fe-Ni trimetallic oxidized carbon nanocubes (Co1-XFeXNi-OCNC) with a continuously changeable Co/Fe ratio (X=0, 0.1, 0.2, 0.5, 0.8, 0.9, 1). The Co1-XFeXNi-OCNC shows a volcano-type oxygen evolution reaction (OER) activity. The optimized Co0.1Fe0.9Ni-OCNC achieves a low overpotential of 268 mV at 10 mA cm(-2) with a very low Tafel slope of 48 mV dec(-1) in 1 m KOH. At the same time, the stability of the Co0.1Fe0.9Ni-OCNC is also outstanding; after 1000 CV cycles, the LSV plot is almost coincident. Moreover, the potential remains almost of the same value at 10 mA cm(-2) after 12 h in comparison to the initial value. The excellent electrocatalytic properties can be attributed to the synergistic cooperation between each component. Therefore, the Co0.1Fe0.9Ni-OCNC is a promising candidate instead of precious metal-based electrocatalysts for OER.
引用
收藏
页码:3357 / 3362
页数:6
相关论文
共 59 条
[1]  
[Anonymous], 2013, ANGEW CHEM INT ED, DOI DOI 10.1002/ANGE.201206410
[2]  
[Anonymous], 2018, ANGEW CHEM
[3]   Controlled vapor-phase synthesis of cobalt oxide nanomaterials with tuned composition and spatial organization [J].
Barreca, Davide ;
Gasparotto, Alberto ;
Lebedev, Oleg I. ;
Maccato, Chiara ;
Pozza, Andrea ;
Tondello, Eugenio ;
Turner, Stuart ;
Van Tendeloo, Gustaaf .
CRYSTENGCOMM, 2010, 12 (07) :2185-2197
[4]   Charge-Transfer Effects in Ni-Fe and Ni-Fe-Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction [J].
Bates, Michael K. ;
Jia, Qingying ;
Doan, Huong ;
Liang, Wentao ;
Mukerjee, Sanjeev .
ACS CATALYSIS, 2016, 6 (01) :155-161
[5]   Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism [J].
Burke, Michaela S. ;
Kast, Matthew G. ;
Trotochaud, Lena ;
Smith, Adam M. ;
Boettcher, Shannon W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (10) :3638-3648
[6]   Experimental study and analytical modeling of an alkaline water electrolysis cell [J].
Chen, Yanan ;
Mojica, Felipe ;
Li, Guangfu ;
Chuang, Po-Ya Abel .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2017, 41 (14) :2365-2373
[7]   In Situ Formation of Cobalt Nitrides/Graphitic Carbon Composites as Efficient Bifunctional Electrocatalysts for Overall Water Splitting [J].
Chen, Ziliang ;
Ha, Yuan ;
Liu, Yang ;
Wang, Hao ;
Yang, Hongyuan ;
Xu, Hongbin ;
Li, Yanjun ;
Wu, Renbing .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (08) :7134-7144
[8]   Two-Dimensional Co@N-Carbon Nanocomposites Facilely Derived from Metal-Organic Framework Nanosheets for Efficient Bifunctional Electrocatalysis [J].
Cong, Jingkun ;
Xu, Hui ;
Lu, Mengting ;
Wu, Yuhang ;
Li, Yuwen ;
He, Panpan ;
Gao, Junkuo ;
Yao, Juming ;
Xu, Shiqing .
CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (11) :1485-1491
[9]   Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges [J].
Deng, Xiaohui ;
Tueysuez, Harun .
ACS CATALYSIS, 2014, 4 (10) :3701-3714
[10]   NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes [J].
Dionigi, Fabio ;
Strasser, Peter .
ADVANCED ENERGY MATERIALS, 2016, 6 (23)