Some New Results for Linear Transformations on Euclidean Jordan Algebras

被引:0
作者
Tao, Jiyuan [1 ]
机构
[1] Loyola Coll, Dept Math Sci, Baltimore, MD 21210 USA
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2 | 2009年 / 1168卷
关键词
Euclidean Jordan algebra; P-property; w-P property; column sufficiency property; complementarity problem; w-uniqueness; COMPLEMENTARITY-PROBLEMS; P-PROPERTIES; MONOTONICITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalizing the w-P property of a matrix, Tao [Some w-P properties for linear transformations on Euclidean Jordan algebras, to appear in Pacific J Optimization] recently introduced and studied the w-P and the w-uniqueness properties for linear transformations defined on Euclidean Jordan algebras. In this paper, we study further to these properties. In particular, we specialize them to the space S-n of all n x n real symmetric matrices and the space H-n of all n x n complex Hermitian matrices for Lyapunov and Stein transformations. We also present a sufficient condition for the w-uniqueness property on S-n. In addition, we give a characterization of the w-P and the column sufficiency properties for a matrix-induced transformation on Euclidean Jordan algebras.
引用
收藏
页码:1415 / 1419
页数:5
相关论文
共 11 条
[1]  
COTTLE RW, 1992, LINERA COMPLEMENTARI
[2]  
Facchinei F., 2007, Finite-dimensional variational inequalities and complementarity problems
[3]  
Faraut J., 1994, ANAL SYMMETRIC CONES
[4]   On semidefinite linear complementarity problems [J].
Gowda, MS ;
Song, Y .
MATHEMATICAL PROGRAMMING, 2000, 88 (03) :575-587
[5]  
Gowda MS, 2000, LINEAR ALGEBRA APPL, V320, P131
[6]   Some P-properties for linear transformations on Euclidean Jordan algebras [J].
Gowda, MS ;
Sznajder, R ;
Tao, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 :203-232
[7]   On some interconnections between strict monotonicity, globally uniquely solvable, and P properties in semidefinite linear complementarity problems [J].
Gowda, MS ;
Song, Y ;
Ravindran, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 370 :355-368
[8]   Some new results for the semidefinite linear complementarity problem [J].
Gowda, MS ;
Song, Y .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 24 (01) :25-39
[9]  
INGLETON AW, 1966, P LOND MATH SOC, V16, P519
[10]   Relationship between strong monotonicity property, P2-property, and the GUS-property in semidefinite linear complementarity problems [J].
Parthasarathy, T ;
Raman, DS ;
Sriparna, B .
MATHEMATICS OF OPERATIONS RESEARCH, 2002, 27 (02) :326-331