The acyclic matrices with a P-set of maximum size

被引:11
作者
Du, Zhibin [1 ]
da Fonseca, Carlos M. [2 ]
机构
[1] Zhaoqing Univ, Sch Math & Informat Sci, Zhaoqing 526061, Peoples R China
[2] Kuwait Univ, Dept Math, Safat 13060, Kuwait
关键词
Trees; Acyclic matrices; Multiplicity of eigenvalues; P-set; P-vertices; NUMBER; MULTIPLICITIES; VERTICES;
D O I
10.1016/j.laa.2013.10.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let m(A) (0) denote the nullity of a given matrix A of order n. Set A(alpha) for the principal submatrix of A obtained after deleting the rows and columns indexed by the nonempty subset a of {1, . . . , n}. When m(A(alpha))(0) = m(A)(0) + |alpha|, we call alpha a P-set of A. In this paper, we classify all of the trees T for which there exists a matrix A whose graph is T and containing a P-set of maximum size. Our characterization does not depend on whether the acyclic matrices are singular or nonsingular. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:27 / 37
页数:11
相关论文
共 12 条
[1]   Nonsingular acyclic matrices with full number of P-vertices [J].
Andelic, Milica ;
Eric, Aleksandra ;
da Fonseca, C. M. .
LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (01) :49-57
[2]   On the number of P-vertices of some graphs [J].
Andelic, Milica ;
da Fonseca, C. M. ;
Mamede, Ricardo .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (02) :514-525
[3]   On the multiplicities of eigenvalues of a Hermitian matrix whose graph is a tree [J].
Da Fonseca, C. M. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (02) :251-261
[4]   The singular acyclic matrices with the second largest number of P-vertices [J].
Du, Zhibin ;
da Fonseca, Carlos M. .
LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (10) :2103-2120
[5]   Nonsingular acyclic matrices with an extremal number of P-vertices [J].
Du, Zhibin ;
da Fonseca, C. M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 442 :2-19
[6]   The singular acyclic matrices with maximal number of P-vertices [J].
Du, Zhibin ;
da Fonseca, C. M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) :2274-2279
[7]   The maximum number of P-vertices of some nonsingular double star matrices [J].
Eric, Aleksandra ;
da Fonseca, C. M. .
DISCRETE MATHEMATICS, 2013, 313 (20) :2192-2194
[8]  
Godsil C. D., 1995, ELECTRON J COMB, V2, pR8
[9]   Hermitian matrices, eigenvalue multiplicities, and eigenvector components [J].
Johnson, CR ;
Sutton, BD .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (02) :390-399
[10]   The Parter-Wiener theorem: Refinement and generalization [J].
Johnson, CR ;
Duarte, AL ;
Saiago, CM .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (02) :352-361