LOCAL WELL-POSEDNESS FOR THE BOLTZMANN EQUATION WITH VERY SOFT POTENTIAL AND POLYNOMIALLY DECAYING INITIAL DATA

被引:3
作者
Henderson, Christopher [1 ]
Wang, Weinan [1 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
关键词
Boltzmann equation; local well-posedness; Carleman decomposition; slow decay; inhomogeneous; very soft potential; SPATIALLY HOMOGENEOUS BOLTZMANN; ANGULAR CUTOFF; GLOBAL EXISTENCE; REGULARITY; UNIQUENESS; BOUNDS;
D O I
10.1137/21M1427504
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we address the local well-posedness of the spatially inhomogeneous noncutoff Boltzmann equation when the initial data decays polynomially in the velocity variable. We consider the case of very soft potentials gamma + 2s < 0. Our main result completes the picture for local well-posedness in this decay class by removing the restriction gamma + 2s -3/2 of previous works. Our approach is entirely based on the Carleman decomposition of the collision operator into a lower order term and an integro-differential operator similar to the fractional Laplacian. Interestingly, this yields a very short proof of local well-posedness when gamma is an element of(-3, 0] and s is an element of(0, 1/2) in a weighted C-1 space that we include as well.
引用
收藏
页码:2845 / 2875
页数:31
相关论文
共 40 条
[1]   On the Landau approximation in plasma physics [J].
Alexandre, R ;
Villani, C .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01) :61-95
[2]   The Boltzmann Equation Without Angular Cutoff in the Whole Space: Qualitative Properties of Solutions [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) :599-661
[3]   Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (02) :513-581
[4]   THE BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF IN THE WHOLE SPACE: II, GLOBAL EXISTENCE FOR HARD POTENTIAL [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C-J ;
Yang, T. .
ANALYSIS AND APPLICATIONS, 2011, 9 (02) :113-134
[5]   On the Boltzmann equation for long-range interactions [J].
Alexandre, R ;
Villani, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (01) :30-70
[6]   Around 3D Boltzmann non linear operator without angular cutoff, a new formulation [J].
Alexandre, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (03) :575-590
[7]   LOCAL EXISTENCE WITH MILD REGULARITY FOR THE BOLTZMANN EQUATION [J].
Alexandre, Radjesvarane ;
Morimoto, Yoshinori ;
Ukai, Seiji ;
Xu, Chao-Jiang ;
Yang, Tong .
KINETIC AND RELATED MODELS, 2013, 6 (04) :1011-1041
[8]   UNIQUENESS OF SOLUTIONS FOR THE NON-CUTOFF BOLTZMANN EQUATION WITH SOFT POTENTIAL [J].
Alexandre, Radjesvarane ;
Morimoto, Yoshinori ;
Ukai, Seiji ;
Xu, Chao-Jiang ;
Yang, Tong .
KINETIC AND RELATED MODELS, 2011, 4 (04) :919-934
[9]   BOUNDED SOLUTIONS OF THE BOLTZMANN EQUATION IN THE WHOLE SPACE [J].
Alexandre, Radjesvarane ;
Morimoto, Yoshinori ;
Ukai, Seiji ;
Xu, Chao-Jiang ;
Yang, Tong .
KINETIC AND RELATED MODELS, 2011, 4 (01) :17-40
[10]   Regularizing Effect and Local Existence for the Non-Cutoff Boltzmann Equation [J].
Alexandre, Radjesvarane ;
Morimoto, Yoshinori ;
Ukai, Seiji ;
Xu, Chao-Jiang ;
Yang, Tong .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :39-123