Domination in the generalized Petersen graph P(ck, k)

被引:0
|
作者
Zhao, Weiliang [1 ]
Zheng, Meifang [1 ]
Wu, Lirong [1 ]
机构
[1] Zhejiang Ind Polytech Coll, Shaoxing 312000, Peoples R China
关键词
Domination number; The generalized Petersen graph; NUMBER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph. A subset S C V is a dominating set of G, if every vertex u is an element of V - S is dominated by some vertex v is an element of S. The domination number, denoted by gamma(G), is the minimum cardinality of a dominating set. Determining the domination number of a graph G is an NP-complete problem, and only for few families of graphs, the exact domination number is known. In this paper, we study the domination number for the generalized Petersen graph P(ck, k), where c >= 3 is a constant. We obtain upper bound on gamma(P(ck, k)) for general c. We also show that gamma(P(3k,k)) =[-5k/3] for any k >= 1, and gamma(P(4k, k)) = 2k for odd k.
引用
收藏
页码:157 / 163
页数:7
相关论文
共 50 条
  • [1] On the Domination Number of Generalized Petersen Graphs P(ck, k)
    Wang, Haoli
    Xu, Xirong
    Yang, Yuansheng
    Wang, Guoqing
    ARS COMBINATORIA, 2015, 118 : 33 - 49
  • [2] On 2-Rainbow Domination of Generalized Petersen Graphs P(ck,k)
    Brezovnik, Simon
    Rupnik Poklukar, Darja
    Zerovnik, Janez
    MATHEMATICS, 2023, 11 (10)
  • [3] On the Double Roman Domination in Generalized Petersen Graphs P(5k,k)
    Rupnik Poklukar, Darja
    Zerovnik, Janez
    MATHEMATICS, 2022, 10 (01)
  • [4] 2-rainbow domination in generalized Petersen graphs P(n, 3)
    Xu, Guangjun
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (11) : 2570 - 2573
  • [5] On the domination number of generalized Petersen graphs P(n, 2)
    Fu Xueliang
    Yang Yuansheng
    Jiang Baoqi
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2445 - 2451
  • [6] The crossing number of the generalized Petersen graph P(3k,k) in the projective plane
    Wang, Jing
    Zhang, Zuozheng
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, : 332 - 338
  • [7] On the domination number of generalized Petersen graphs P(n,3)
    Fu Xueliang
    Yang Yuansheng
    Jiang Baoqi
    ARS COMBINATORIA, 2007, 84 : 373 - 383
  • [8] POWER DOMINATION IN THE GENERALIZED PETERSEN GRAPHS
    Zhao, Min
    Shan, Erfang
    Kang, Liying
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (03) : 695 - 712
  • [9] On the power domination number of the generalized Petersen graphs
    Guangjun Xu
    Liying Kang
    Journal of Combinatorial Optimization, 2011, 22 : 282 - 291
  • [10] The exact domination number of generalized Petersen graphs P(n, k) with n=2k and n=2k+2
    Liu, Juan
    Zhang, Xindong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2014, 33 (02): : 497 - 506