X-semipermutable subgroups of finite groups

被引:91
作者
Guo, Wenbin [1 ]
Shum, K. P.
Skiba, Alexander N.
机构
[1] Chinese Univ Hong Kong, Fac Sci, Hong Kong, Hong Kong, Peoples R China
[2] Xuzhou Normal Univ, Dept Math, Xuzhou 221116, Peoples R China
[3] Gomel State Univ, Dept Math, Gomel 246028, BELARUS
基金
中国国家自然科学基金;
关键词
finite group; X-semipermutable group; 2-maximal subgroup; supersoluble group; nilpotent group; hall; subgroup;
D O I
10.1016/j.jalgebra.2007.06.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a non-empty subset of a group G. Then we call a subgroup A of G a X-semipermutable subgroup of G if A has a supplement T in G such that for every subgroup T-1 of T there exists an element X E X such that A T-1(x) = T-1(x) A. In this paper, we study the properties of X-semipermutable subgroups. In particular, a new version of the famous Schur-Zassenhaus Theorem in terms of X-semipermutable subgroups is given. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:31 / 41
页数:11
相关论文
共 11 条
[1]  
[Anonymous], ENDLICHE GRUPPEN 1
[2]  
[Anonymous], 1978, FINITE GROUPS
[3]  
Doerk K., 1992, GRUYTER EXP MATH, V4
[4]  
GUO W, 2005, SE ASIAN B MATH, V29, P493
[5]  
GUO W, 2003, X PERMUTABLE SUBGROU, V61
[6]  
Guo WB, 2006, PUBL MATH-DEBRECEN, V68, P433
[7]   G-covering systems of subgroups for classes of p-supersoluble and p-nilpotent finite groups [J].
Guo, WB ;
Shum, KP ;
Skiba, AN .
SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (03) :433-442
[8]   G-covering subgroup systems for the classes of supersoluble and nilpotent groups [J].
Guo, WB ;
Shum, KP ;
Skiba, A .
ISRAEL JOURNAL OF MATHEMATICS, 2003, 138 (1) :125-138
[9]  
HENRY G, 1982, BETWEEN NILPOTENT SO
[10]  
Kegel O. H., 1961, ARCH MATH, V12, P90, DOI DOI 10.1007/BF01650529