AUTOMATIC CATARACT HARDNESS CLASSIFICATION EX VIVO BY ULTRASOUND TECHNIQUES

被引:11
|
作者
Caixinha, Miguel [1 ,2 ]
Santos, Mario [1 ]
Santos, Jaime [1 ]
机构
[1] Univ Coimbra, Dept Phys, PT-3030290 Coimbra, Portugal
[2] Univ Coimbra, Dept Elect & Comp Engn, PT-3030290 Coimbra, Portugal
来源
ULTRASOUND IN MEDICINE AND BIOLOGY | 2016年 / 42卷 / 04期
关键词
Ultrasound; Cataract; Classification; Phacoemulsification; SVM; TISSUE CHARACTERIZATION; HILBERT SPECTRUM; BREAST MASSES; NAKAGAMI; LENS; BACKSCATTERING; INFORMATION; TRANSDUCER; STATISTICS; PARAMETERS;
D O I
10.1016/j.ultrasmedbio.2015.11.021
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
To demonstrate the feasibility of a new methodology for cataract hardness characterization and automatic classification using ultrasound techniques, different cataract degrees were induced in 210 porcine lenses. A 25-MHz ultrasound transducer was used to obtain acoustical parameters (velocity and attenuation) and backscattering signals. B-Scan and parametric Nakagami images were constructed. Ninety-seven parameters were extracted and subjected to a Principal Component Analysis. Bayes, K-Nearest-Neighbours, Fisher Linear Discriminant and Support Vector Machine (SVM) classifiers were used to automatically classify the different cataract severities. Statistically significant increases with cataract formation were found for velocity, attenuation, mean brightness intensity of the B-Scan images and mean Nakagami m parameter (p < 0.01). The four classifiers showed a good performance for healthy versus cataractous lenses (F-measure >= 92.68%), while for initial versus severe cataracts the SVM classifier showed the higher performance (90.62%). The results showed that ultrasound techniques can be used for non-invasive cataract hardness characterization and automatic classification. (E-mail: miguel.caixinha@gmail.com) (C) 2016 World Federation for Ultrasound in Medicine & Biology.
引用
收藏
页码:989 / 998
页数:10
相关论文
共 50 条
  • [31] EX VIVO STUDY OF QUANTITATIVE ULTRASOUND PARAMETERS IN FATTY RABBIT LIVERS
    Ghoshal, Goutam
    Lavarello, Roberto J.
    Kemmerer, Jeremy P.
    Miller, Rita J.
    Oelze, Michael L.
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2012, 38 (12): : 2238 - 2248
  • [32] Automatic text classification of English newswire articles based on statistical classification techniques
    Zu, GW
    Ohyama, W
    Wakabayashi, T
    Kimura, F
    ELECTRICAL ENGINEERING IN JAPAN, 2005, 152 (01) : 50 - 60
  • [33] THE SPEED OF SOUND IN RAT LIVER WITH STEATOHEPATITIS: EX VIVO ANALYSIS USING TWO TYPES OF ULTRASOUND SYSTEMS
    Kumagai, Hideki
    Taniguchi, Nobuyuki
    Yokoyama, Koji
    Katsuyama, Kimito
    Yamamoto, Hiroaki
    Hara, Shoji
    Hirota, Norio
    Itoh, Kouichi
    Yamagata, Takanori
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2019, 45 (08): : 2258 - 2265
  • [34] An improvement for the automatic classification method for ultrasound images used on CNN
    Avazov, Kuldoshbay
    Abdusalomov, Akmalbek
    Mukhiddinov, Mukhriddin
    Baratov, Nodirbek
    Makhmudov, Fazliddin
    Cho, Young Im
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (02)
  • [35] Precision of MRI/ultrasound-fusion biopsy in prostate cancer diagnosis: an ex vivo comparison of alternative biopsy techniques on prostate phantoms
    Westhoff, N.
    Siegel, F. P.
    Hausmann, D.
    Polednik, M.
    von Hardenberg, J.
    Michel, M. S.
    Ritter, M.
    WORLD JOURNAL OF UROLOGY, 2017, 35 (07) : 1015 - 1022
  • [36] Non destructive techniques of automatic shape classification of vegetal products
    Buzera, Marius
    Balas, Valentina E.
    Prostean, Gabriela
    Mastorakis, Nikos E.
    NN'09: PROCEEDINGS OF THE 10TH WSEAS INTERNATIONAL CONFERENCE ON NEURAL NETWORKS: PROCEEDINGS OF THE 10TH WSEAS INTERNATIONAL CONFERENCE ON NEURAL NETWORKS (NN'09), 2009, : 184 - +
  • [37] Automatic Classification of Foot Thermograms Using Machine Learning Techniques
    Filipe, Vitor
    Teixeira, Pedro
    Teixeira, Ana
    ALGORITHMS, 2022, 15 (07)
  • [38] Ex Vivo High-Frequency Ultrasound for Assessment of Basal Cell Carcinoma
    Vilas-Sueiro, Alejandro
    Alfageme, Fernando
    Salgueero, Irene
    De las Heras, Cristina
    Roustan, Gaston
    JOURNAL OF ULTRASOUND IN MEDICINE, 2019, 38 (02) : 529 - 531
  • [39] RENAL VOLUME ESTIMATION USING FREEHAND ULTRASOUND SCANS: AN EX VIVO DEMONSTRATION
    Benjamin, Alex
    Chen, Melinda
    Li, Qian
    Chen, Lei
    Dong, Yi
    Carrascal, Carolina A.
    Xie, Hua
    Samir, Anthony E.
    Anthony, Brian W.
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2020, 46 (07): : 1769 - 1782
  • [40] Ex vivo validation of 45 MHz intravascular ultrasound backscatter tissue characterization
    Campos, Carlos M.
    Fedewa, Russell J.
    Garcia-Garcia, Hector M.
    Vince, D. Geoffrey
    Margolis, M. Pauliina
    Lemos, Pedro A.
    Stone, Gregg W.
    Serruys, Patrick W.
    Nair, Anuja
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2015, 16 (10) : 1112 - 1119