AUTOMATIC CATARACT HARDNESS CLASSIFICATION EX VIVO BY ULTRASOUND TECHNIQUES

被引:11
|
作者
Caixinha, Miguel [1 ,2 ]
Santos, Mario [1 ]
Santos, Jaime [1 ]
机构
[1] Univ Coimbra, Dept Phys, PT-3030290 Coimbra, Portugal
[2] Univ Coimbra, Dept Elect & Comp Engn, PT-3030290 Coimbra, Portugal
来源
ULTRASOUND IN MEDICINE AND BIOLOGY | 2016年 / 42卷 / 04期
关键词
Ultrasound; Cataract; Classification; Phacoemulsification; SVM; TISSUE CHARACTERIZATION; HILBERT SPECTRUM; BREAST MASSES; NAKAGAMI; LENS; BACKSCATTERING; INFORMATION; TRANSDUCER; STATISTICS; PARAMETERS;
D O I
10.1016/j.ultrasmedbio.2015.11.021
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
To demonstrate the feasibility of a new methodology for cataract hardness characterization and automatic classification using ultrasound techniques, different cataract degrees were induced in 210 porcine lenses. A 25-MHz ultrasound transducer was used to obtain acoustical parameters (velocity and attenuation) and backscattering signals. B-Scan and parametric Nakagami images were constructed. Ninety-seven parameters were extracted and subjected to a Principal Component Analysis. Bayes, K-Nearest-Neighbours, Fisher Linear Discriminant and Support Vector Machine (SVM) classifiers were used to automatically classify the different cataract severities. Statistically significant increases with cataract formation were found for velocity, attenuation, mean brightness intensity of the B-Scan images and mean Nakagami m parameter (p < 0.01). The four classifiers showed a good performance for healthy versus cataractous lenses (F-measure >= 92.68%), while for initial versus severe cataracts the SVM classifier showed the higher performance (90.62%). The results showed that ultrasound techniques can be used for non-invasive cataract hardness characterization and automatic classification. (E-mail: miguel.caixinha@gmail.com) (C) 2016 World Federation for Ultrasound in Medicine & Biology.
引用
收藏
页码:989 / 998
页数:10
相关论文
共 50 条
  • [1] New approach for objective cataract classification based on ultrasound techniques using multiclass SVM classifiers
    Caixinha, Miguel
    Velte, Elena
    Santos, Mario
    Santos, Jaime B.
    2014 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2014, : 2402 - 2405
  • [2] In-Vivo Automatic Nuclear Cataract Detection and Classification in an Animal Model by Ultrasounds
    Caixinha, Miguel
    Amaro, Joao
    Santos, Mario
    Perdigao, Fernando
    Gomes, Marco
    Santos, Jaime
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (11) : 2326 - 2335
  • [3] Using Ultrasound Backscattering Signals and Nakagami Statistical Distribution to Assess Regional Cataract Hardness
    Caixinha, Miguel
    Jesus, Danilo A.
    Velte, Elena
    Santos, Mario J.
    Santos, Jaime B.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2014, 61 (12) : 2921 - 2929
  • [4] Determining Optimal Torsional Ultrasound Power for Cataract Surgery With Automatic Longitudinal Pulses at Maximum Vacuum Ex Vivo
    Ronquillo, Cecinio C., Jr.
    Zaugg, Brian
    Stagg, Brian
    Kirk, Kevin R.
    Gupta, Isha
    Barlow, William R., Jr.
    Pettey, Jeff H.
    Olson, Randall J.
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2014, 158 (06) : 1262 - 1266
  • [5] Coregistered photoacoustic and ultrasound imaging and classification of ovarian cancer: ex vivo and in vivo studies
    Salehi, Hassan S.
    Li, Hai
    Merkulov, Alex
    Kumavor, Patrick D.
    Vavadi, Hamed
    Sanders, Melinda
    Kueck, Angela
    Brewer, Molly A.
    Zhu, Quing
    JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (04)
  • [6] Automatic Cataract Classification based on Ultrasound Technique using Machine Learning: A comparative Study
    Caixinha, Miguel
    Velte, Elena
    Santos, Mario
    Perdigao, Fernando
    Amaro, Joao
    Gomes, Marco
    Santos, Jaime
    PROCEEDINGS OF THE 2015 ICU INTERNATIONAL CONGRESS ON ULTRASONICS, 2015, 70 : 1221 - 1224
  • [7] DNA damage in lens epithelium of cataract patients in vivo and ex vivo
    Osnes-Ringen, Oyvind
    Azqueta, Amaia O.
    Moe, Morten C.
    Zetterstrom, Charlotta
    Roger, Magnus
    Nicolaissen, Bjorn
    Collins, Andrew R.
    ACTA OPHTHALMOLOGICA, 2013, 91 (07) : 652 - 656
  • [8] Automatic Cataract Classification System
    Harini, V.
    Bhanumathi, V.
    2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), VOL. 1, 2016, : 815 - 819
  • [9] A Simple Pre-Operative Nuclear Classification Score (SPONCS) for Grading Cataract Hardness in Clinical Studies
    Mandelblum, Jorge
    Fischer, Naomi
    Achiron, Asaf
    Goldberg, Mordechai
    Tuuminen, Raimo
    Zunz, Eran
    Spierer, Oriel
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (11) : 1 - 9
  • [10] THE RELATIONS BETWEEN CLINICAL CLASSIFICATION OF CATARACT AND LENS HARDNESS
    HEYWORTH, P
    THOMPSON, GM
    TABANDEH, H
    MCGUIGAN, S
    EYE, 1993, 7 : 726 - 730