ELLIPTIC CURVES ARISING FROM BRAHMAGUPTA QUADRILATERALS

被引:11
作者
Izadi, Farzali [1 ]
Khoshnam, Foad [1 ]
Moody, Dustin [2 ]
Zargar, Arman Shamsi [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz 5375171379, Iran
[2] NIST, Comp Secur Div, Gaithersburg, MD 20899 USA
关键词
Brahmagupta quadrilateral; elliptic curve; Heron triangle; rank; DIOPHANTINE TRIPLES; HIGH-RANK; CONSTRUCTION;
D O I
10.1017/S0004972713001172
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Brahmagupta quadrilateral is a cyclic quadrilateral whose sides, diagonals and area are all integer values. In this article, we characterise the notions of Brahmagupta, introduced by K. R. S. Sastry ['Brahmagupta quadrilaterals', Forum Geom. 2 (2002), 167-173], by means of elliptic curves. Motivated by these characterisations, we use Brahmagupta quadrilaterals to construct infinite families of elliptic curves with torsion group Z/2Z x Z/2Z having ranks (at least) four, five and six. Furthermore, by specialising we give examples from these families of specific curves with rank nine.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 16 条
[1]   ON THE RANK OF ELLIPTIC CURVES COMING FROM RATIONAL DIOPHANTINE TRIPLES [J].
Aguirre, Julian ;
Dujella, Andrej ;
Carlos Peral, Juan .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (06) :1759-1776
[2]  
Alina C., 2007, Forum Geometricorum, V7, P147
[3]  
[Anonymous], 1994, GRAD TEXTS MATH
[4]   Heron quadrilaterals with sides in arithmetic or geometric progression [J].
Buchholz, RH ;
MacDougall, JA .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (02) :263-269
[5]  
Daia L., 1984, GAZ MATH, V89, P276
[6]  
DICKSON LE, 1971, HIST THEORY NUMBERS
[7]   Irregular Diophantine m-tuples and elliptic curves of high rank [J].
Dujella, A .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2000, 76 (05) :66-67
[8]   Diophantine triples and construction of high-rank elliptic curves over Q with three nontrivial 2-torsion points [J].
Dujella, A .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (01) :157-164
[9]   ELLIPTIC CURVES COMING FROM HERON TRIANGLES [J].
Dujella, Andrej ;
Peral, Juan Carlos .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (04) :1145-1160
[10]  
Elkies N.D., 2007, ARXIV07092908