Efficient search space pruning strategies for mining frequent itemsets

被引:0
作者
Kalpana, B. [1 ]
Nadarajan, R. [2 ]
Moyyad, Rukaiya
机构
[1] Avinashilingam Univ Women, Dept Comp Sci, Coimbatore, Tamil Nadu, India
[2] PSG Coll Technol, Dept Math & Comp Applicat, Coimbatore, Tamil Nadu, India
来源
IMECS 2007: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II | 2007年
关键词
association rules; data mining; frequent itemsets; hybrid search;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Enumeration of the frequent itemsets forms the computationally intensive task in Association rule mining. Pruning the search space is a primary objective in many of the proposed strategies. However some of the methods effectively apply only the downward closure property and often a number of computations are wasted in examining infrequent nodes. We propose two hybrid search strategies based on a lattice framework that apply both the upward and downward closure properties optimally to prune the search space. The strategies employ intelligent heuristics to optimally switch between a bottom up and top down phase to reduce the search space by almost fifty percent.
引用
收藏
页码:722 / +
页数:2
相关论文
共 19 条
[1]  
Agrawal R., 1993, ACM SIGMOD C MAN DAT
[2]  
[Anonymous], 1996, Advances in Knowledge Discovery and Data Mining, DOI DOI 10.1007/978-3-319-31750-2.
[3]  
[Anonymous], 1997, P 3 KDD
[4]  
BRIN S, 1997, ACM SIGMOD C MAN DAT
[5]  
Davey B. A., 1990, INTRO LATTICES ORDER
[6]  
Han J., 2012, Data Mining, P393, DOI [DOI 10.1016/B978-0-12-381479-1.00009-5, 10.1016/B978-0-12-381479-1.00001-0]
[7]  
HAND D, 2004, PRINCIPLES DATA MINI
[8]  
LIN DI, 1998, 6 INT C EXT DAT TECH
[9]  
LIN JL, 1998, 14 INT C DAT ENG FEB
[10]  
LUCCHESE C, 2003, IEEE ICDM WORKSH FRE