Random walks on graphs with interval weights and precise marginals

被引:2
|
作者
Skulj, Damjan [1 ]
机构
[1] Univ Ljubljana, Fac Social Sci, Kardeljeva Ploscad 5, SI-1000 Ljubljana, Slovenia
关键词
Weighted graph; Random walk; Markov chain; Imprecise Markov chain; Reversible Markov chain; Local optimization; MARKOV-CHAINS; COVER TIME; COMPUTATION;
D O I
10.1016/j.ijar.2016.02.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a model of random walks on weighted graphs where the weights are interval valued, and connect it to reversible imprecise Markov chains. While the theory of imprecise Markov chains is now well established, this is a first attempt to model reversible chains. In contrast with the existing theory, the probability models that have to be considered are now non convex. This presents a difficulty in computational sense, since convexity is critical for the existence of efficient optimization algorithms used in the existing models. The second part of the paper therefore addresses the computational issues of the model. The goal is finding sets of weights which maximize or minimize expectations corresponding to multiple steps transition probabilities. In particular, we present a local optimization algorithm and numerically test its efficiency. We show that its application allows finding close approximations of the globally best solutions in reasonable time. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:76 / 86
页数:11
相关论文
共 50 条
  • [41] Diffusive estimates for random walks on stationary random graphs of polynomial growth
    Ganguly, Shirshendu
    Lee, James R.
    Peres, Yuval
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (03) : 596 - 630
  • [42] Growth series and random walks on some hyperbolic graphs
    Bartholdi, L
    Ceccherini-Silberstein, TG
    MONATSHEFTE FUR MATHEMATIK, 2002, 136 (03): : 181 - 202
  • [43] Non-backtracking random walks and cogrowth of graphs
    Ortner, Ronald
    Woess, Wolfgang
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2007, 59 (04): : 828 - 844
  • [44] On the isomorphisms between evolution algebras of graphs and random walks
    Cadavid, Paula
    Rodino Montoya, Mary Luz
    Rodriguez, Pablo M.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (10) : 1858 - 1877
  • [45] Random walks on infinite self-similar graphs
    Neunhaeuserer, J.
    ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 : 1258 - 1275
  • [46] Growth Series and Random Walks on Some Hyperbolic Graphs
    Laurent Bartholdi
    Tullio G. Ceccherini-Silberstein
    Monatshefte für Mathematik, 2002, 136 : 181 - 202
  • [47] INTERLACINGS FOR RANDOM WALKS ON WEIGHTED GRAPHS AND THE INTERCHANGE PROCESS
    Dieker, A. B.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (01) : 191 - 206
  • [48] On the equivalence between quantum and random walks on finite graphs
    Matheus G. Andrade
    Franklin de Lima Marquezino
    Daniel R. Figueiredo
    Quantum Information Processing, 2020, 19
  • [49] On the equivalence between quantum and random walks on finite graphs
    Andrade, Matheus G.
    Marquezino, Franklin De Lima
    Figueiredo, Daniel R.
    QUANTUM INFORMATION PROCESSING, 2020, 19 (11)
  • [50] An Explicit Formula of Hitting Times for Random Walks on Graphs
    Xu, Hao
    Yau, Shing-Tung
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2014, 10 (03) : 567 - 581