An invariance principle for triangular arrays

被引:5
作者
D'Aristotile, A [1 ]
机构
[1] SUNY Coll Plattsburgh, Dept Math, Plattsburgh, NY 12901 USA
关键词
triangular array; sign-symmetry; exchangeability; invariance principle; Haar measure;
D O I
10.1023/A:1007801726073
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let A(n,t) be a triangular array of sign-symmetric exchangeable random variables satisfying nE(A(n,i)(2)) --> 1, nE(A(n,i)(4)) --> 0, n(2)E(A(n,1)(2)A(n,2)(2)) --> 1.We show that Sigma(i=1)([nt]) A(ni), 0 less than or equal to t less than or equal to 1, converges to Brownian motion. This is applied to show that if A is chosen from the uniform distribution on the orthogonal group O-n and X-n(t) = Sigma(i=1)([nt]) A(ij), then X-n converges to Brownian motion. Similar results hold For the unitary group.
引用
收藏
页码:327 / 341
页数:15
相关论文
共 17 条
  • [1] Arratia R., 1990, STAT SCI, P403, DOI [10.1214/ss/1177012015, DOI 10.1214/SS/1177012015]
  • [2] BHATTACHARYA R, 1990, STOCHASTIC PROCESS A
  • [3] BILLENSLEY PJ, 1968, CONVERGENCE PROBABIL
  • [4] Billingsley P., 1986, PROBABILITY MEASURE
  • [5] Borel E., 1914, Introduction geometrique a quelques theories physiques
  • [6] BROCKNER T, 1985, REPRESENTATION COMPA
  • [7] DAFFER P, 1985, LIMIT THEOREM SUMS E
  • [8] DARISTOTILE A, 1997, BROWNIAN MOTION CLAS
  • [9] DIACONIS P, 1994, EIGENVALUES RANDOM M, P44
  • [10] DIACONIS P, 1986, TRACE RANDOM ORTHOGO