Maximal lengths of exceptional collections of line bundles

被引:18
作者
Efimov, Alexander I. [1 ,2 ]
机构
[1] RAS, Steklov Math Inst, Moscow 119991, Russia
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2014年 / 90卷
关键词
TORIC VARIETIES; SHEAVES;
D O I
10.1112/jlms/jdu037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct infinitely many examples of toric Fano varieties with Picard number three, which do not admit full exceptional collections of line bundles. In particular, this disproves King's conjecture for toric Fano varieties. More generally, we prove that for any constant c > 3/4 there exist infinitely many toric Fano varieties Y with Picard number three, such that the maximal length of exceptional collection of line bundles on Y is strictly less than c rk K-0(Y). To obtain varieties without full exceptional collections of line bundles, it suffices to put c = 1. On the other hand, we prove that for any toric nef-Fano DM stack Y with Picard number three, there exists a strong exceptional collection of line bundles on Y of length at least 3/4 rk K-0(Y). The constant 3/4 is thus maximal with this property.
引用
收藏
页码:350 / 372
页数:23
相关论文
共 11 条
[1]   ON THE CLASSIFICATION OF SMOOTH PROJECTIVE TORIC VARIETIES [J].
BATYREV, VV .
TOHOKU MATHEMATICAL JOURNAL, 1991, 43 (04) :569-585
[2]   On the conjecture of King for smooth toric Deligne-Mumford stacks [J].
Borisov, Lev ;
Hua, Zheng .
ADVANCES IN MATHEMATICS, 2009, 221 (01) :277-301
[3]   Mellin-Barnes integrals as Fourier-Mukai transforms [J].
Borisov, Lev A. ;
Horja, R. Paul .
ADVANCES IN MATHEMATICS, 2006, 207 (02) :876-927
[4]   Tilting sheaves on toric varieties [J].
Costa, L ;
Miró-Roig, RM .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (04) :849-865
[5]   The Coherent-Constructible Correspondence for Toric Deligne-Mumford Stacks [J].
Fang, Bohan ;
Liu, Chiu-Chu Melissa ;
Treumann, David ;
Zaslow, Eric .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (04) :914-954
[6]   A counterexample to King's conjecture [J].
Hille, Lutz ;
Perling, Markus .
COMPOSITIO MATHEMATICA, 2006, 142 (06) :1507-1521
[7]   Exceptional sequences of invertible sheaves on rational surfaces [J].
Hille, Lutz ;
Perling, Markus .
COMPOSITIO MATHEMATICA, 2011, 147 (04) :1230-1280
[8]  
Ishii A., 2009, ARXIV09114529
[9]   Derived categories of toric varieties [J].
Kawamata, Yujiro .
MICHIGAN MATHEMATICAL JOURNAL, 2006, 54 (03) :517-535
[10]  
King A. D., 1997, preprint