Strategies for Glycoengineering Therapeutic Proteins

被引:32
作者
Dammen-Brower, Kris [1 ,2 ]
Epler, Paige [1 ,2 ]
Zhu, Stanley [1 ,2 ]
Bernstein, Zachary J. [1 ,2 ]
Stabach, Paul R. [3 ]
Braddock, Demetrios T. [3 ]
Spangler, Jamie B. [1 ,2 ,4 ,5 ,6 ,7 ,8 ]
Yarema, Kevin J. [1 ,2 ]
机构
[1] Johns Hopkins Sch Med, Translat Tissue Engn Ctr, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[3] Yale Univ, Sch Med, Dept Pathol, New Haven, CT 06510 USA
[4] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD USA
[5] Johns Hopkins Sch Med, Dept Oncol, Baltimore, MD USA
[6] Johns Hopkins Sch Med, Sidney Kimmel Comprehens Canc Ctr, Bloomberg Kimmel Inst Canc Immunotherapy, Baltimore, MD USA
[7] Johns Hopkins Sch Med, Wilmer Eye Inst, Dept Ophthalmol, Baltimore, MD USA
[8] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Mol Microbiol & Immunol, Baltimore, MD USA
来源
FRONTIERS IN CHEMISTRY | 2022年 / 10卷
基金
美国国家卫生研究院;
关键词
glycoengineering; pharmacodynamics; pharmacokinetics; therapeutic; glycosylation; N-glycans; biomanufacturing; N-LINKED GLYCOSYLATION; HAMSTER OVARY CELLS; ACYL SIDE-CHAIN; SIALIC-ACID; INSECT CELLS; HUMAN CARBOXYLESTERASE-1; ANTIBODY GLYCOSYLATION; MANNOSE RECEPTOR; IMMUNOGLOBULIN-G; METABOLIC FLUX;
D O I
10.3389/fchem.2022.863118
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Almost all therapeutic proteins are glycosylated, with the carbohydrate component playing a long-established, substantial role in the safety and pharmacokinetic properties of this dominant category of drugs. In the past few years and moving forward, glycosylation is increasingly being implicated in the pharmacodynamics and therapeutic efficacy of therapeutic proteins. This article provides illustrative examples of drugs that have already been improved through glycoengineering including cytokines exemplified by erythropoietin (EPO), enzymes (ectonucleotide pyrophosphatase 1, ENPP1), and IgG antibodies (e.g., afucosylated Gazyva (R), Poteligeo (R), Fasenra (TM), and Uplizna (R)). In the future, the deliberate modification of therapeutic protein glycosylation will become more prevalent as glycoengineering strategies, including sophisticated computer-aided tools for "building in" glycans sites, acceptance of a broad range of production systems with various glycosylation capabilities, and supplementation methods for introducing non-natural metabolites into glycosylation pathways further develop and become more accessible.
引用
收藏
页数:27
相关论文
共 260 条
  • [1] Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea
    Abu-Qarn, Mehtap
    Eichler, Jerry
    Sharon, Nathan
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2008, 18 (05) : 544 - 550
  • [2] Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity
    Ackerman, Margaret E.
    Crispin, Max
    Yu, Xiaojie
    Baruah, Kavitha
    Boesch, Austin W.
    Harvey, David J.
    Dugast, Anne-Sophie
    Heizen, Erin L.
    Ercan, Altan
    Choi, Ickwon
    Streeck, Hendrik
    Nigrovic, Peter A.
    Bailey-Kellogg, Chris
    Scanlan, Chris
    Alter, Galit
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2013, 123 (05) : 2183 - 2192
  • [3] Agatemor C., 2020, Comprehensive glycoscience, V3, P253, DOI [10.1016/B978-0-12-409547-2.14962-5, DOI 10.1016/B978-0-12-409547-2.14962-5]
  • [4] Exploiting metabolic glycoengineering to advance healthcare
    Agatemor, Christian
    Buettner, Matthew J.
    Ariss, Ryan
    Muthiah, Keerthana
    Saeui, Christopher T.
    Yarema, Kevin J.
    [J]. NATURE REVIEWS CHEMISTRY, 2019, 3 (10) : 605 - 620
  • [5] Regioisomeric SCFA attachment to hexosamines separates metabolic flux from cytotoxicity and MUC1 suppression
    Aich, Udayanath
    Campbell, Christopher T.
    Elmouelhi, Noha
    Weier, Christopher A.
    Sampathkumar, S. -Gopalan
    Choi, Sean S.
    Yarema, Kevrin J.
    [J]. ACS CHEMICAL BIOLOGY, 2008, 3 (04) : 230 - 240
  • [6] N-glycan patterns of human transferrin produced in Trichoplusia ni insect cells:: effects of mammalian galactosyltransferase
    Ailor, E
    Takahashi, N
    Tsukamoto, Y
    Masuda, K
    Rahman, BA
    Jarvis, DL
    Lee, YC
    Betenbaugh, MJ
    [J]. GLYCOBIOLOGY, 2000, 10 (08) : 837 - 847
  • [7] ENPP1-Fc prevents mortality and vascular calcifications in rodent model of generalized arterial calcification of infancy
    Albright, Ronald A.
    Stabach, Paul
    Cao, Wenxiang
    Kavanagh, Dillon
    Mullen, Isabelle
    Braddock, Alexander A.
    Covo, Mariel S.
    Tehan, Martin
    Yang, Guangxiao
    Cheng, Zhiliang
    Bouchard, Keith
    Yu, Zhao-Xue
    Thorn, Stephanie
    Wang, Xiangning
    Folta-Stogniew, Ewa J.
    Negrete, Alejandro
    Sinusas, Albert J.
    Shiloach, Joseph
    Zubal, George
    Madri, Joseph A.
    De La Cruz, Enrique M.
    Braddock, Demetrios T.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [8] Metabolic oligosaccharide engineering with N-Acyl functionalized ManNAc analogs: Cytotoxicity, metabolic flux, and glycan-display considerations
    Almaraz, Ruben T.
    Aich, Udayanath
    Khanna, Hargun S.
    Tan, Elaine
    Bhattacharya, Rahul
    Shah, Shivam
    Yarema, Kevin J.
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2012, 109 (04) : 992 - 1006
  • [9] Antibody glycosylation in inflammation, disease and vaccination
    Alter, Galit
    Ottenhoff, Tom H. M.
    Joosten, Simone A.
    [J]. SEMINARS IN IMMUNOLOGY, 2018, 39 (0C) : 102 - 110
  • [10] Alves Marcia, 2016, Biochem Biophys Rep, V5, P105, DOI 10.1016/j.bbrep.2015.11.018