Statistical Learning Methods Applicable to Genome-Wide Association Studies on Unbalanced Case-Control Disease Data

被引:6
作者
Dai, Xiaotian [1 ]
Fu, Guifang [1 ]
Zhao, Shaofei [1 ]
Zeng, Yifei [1 ]
机构
[1] SUNY Binghamton Univ, Dept Math Sci, Vestal, NY 13850 USA
关键词
disease; GWAS; unbalanced case-control; genomic selection; genomic prediction; BAYESIAN VARIABLE SELECTION; GENE-GENE INTERACTION; MIXED-MODEL ANALYSIS; POPULATION-STRUCTURE; SUSCEPTIBILITY LOCI; CONJUGATE GRADIENTS; QUADRATIC-FORMS; CLASS IMBALANCE; REGRESSION; CLASSIFICATION;
D O I
10.3390/genes12050736
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Despite the fact that imbalance between case and control groups is prevalent in genome-wide association studies (GWAS), it is often overlooked. This imbalance is getting more significant and urgent as the rapid growth of biobanks and electronic health records have enabled the collection of thousands of phenotypes from large cohorts, in particular for diseases with low prevalence. The unbalanced binary traits pose serious challenges to traditional statistical methods in terms of both genomic selection and disease prediction. For example, the well-established linear mixed models (LMM) yield inflated type I error rates in the presence of unbalanced case-control ratios. In this article, we review multiple statistical approaches that have been developed to overcome the inaccuracy caused by the unbalanced case-control ratio, with the advantages and limitations of each approach commented. In addition, we also explore the potential for applying several powerful and popular state-of-the-art machine-learning approaches, which have not been applied to the GWAS field yet. This review paves the way for better analysis and understanding of the unbalanced case-control disease data in GWAS.
引用
收藏
页数:14
相关论文
共 98 条
[1]   Bayesian multiple logistic regression for case-control GWAS [J].
Banerjee, Saikat ;
Zeng, Lingyao ;
Schunkert, Heribert ;
Soeding, Johannes .
PLOS GENETICS, 2018, 14 (12)
[2]   Pulmonary Disease and Age at Immigration among Hispanics Results from the Hispanic Community Health Study/Study of Latinos [J].
Barr, R. Graham ;
Aviles-Santa, Larissa ;
Davis, Sonia M. ;
Aldrich, Tom K. ;
Gonzalez, Franklyn, II ;
Henderson, Ashley G. ;
Kaplan, Robert C. ;
LaVange, Lisa ;
Liu, Kiang ;
Loredo, Jose S. ;
Mendes, Eliana S. ;
Ni, Ai ;
Ries, Andrew ;
Salathe, Matthias ;
Smith, Lewis J. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2016, 193 (04) :386-395
[3]   GUESS-ing Polygenic Associations with Multiple Phenotypes Using a GPU-Based Evolutionary Stochastic Search Algorithm [J].
Bottolo, Leonardo ;
Chadeau-Hyam, Marc ;
Hastie, David I. ;
Zeller, Tanja ;
Liquet, Benoit ;
Newcombe, Paul ;
Yengo, Loic ;
Wild, Philipp S. ;
Schillert, Arne ;
Ziegler, Andreas ;
Nielsen, Sune F. ;
Butterworth, Adam S. ;
Ho, Weang Kee ;
Castagne, Raphaele ;
Munzel, Thomas ;
Tregouet, David ;
Falchi, Mario ;
Cambien, Francois ;
Nordestgaard, Borge G. ;
Fumeron, Frederic ;
Tybjaerg-Hansen, Anne ;
Froguel, Philippe ;
Danesh, John ;
Petretto, Enrico ;
Blankenberg, Stefan ;
Tiret, Laurence ;
Richardson, Sylvia .
PLOS GENETICS, 2013, 9 (08)
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]  
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1007/BF00058655
[6]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25
[7]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[8]   Scalable Variational Inference for Bayesian Variable Selection in Regression, and Its Accuracy in Genetic Association Studies [J].
Carbonetto, Peter ;
Stephens, Matthew .
BAYESIAN ANALYSIS, 2012, 7 (01) :73-107
[9]   Exploiting Linkage Disequilibrium for Ultrahigh-Dimensional Genome-Wide Data with an Integrated Statistical Approach [J].
Carlsen, Michelle ;
Fu, Guifang ;
Bushman, Shaun ;
Corcoran, Christopher .
GENETICS, 2016, 202 (02) :411-426
[10]  
Chawla N.V., 2004, ACM SIGKDD Explor. Newsl., V6, P1, DOI DOI 10.1145/1007730.1007733