Arabidopsis galactinol synthase AtGolS2 improves drought tolerance in the monocot model Brachypodium distachyon

被引:39
|
作者
Himuro, Yasuyo [1 ]
Ishiyama, Kanako [2 ]
Mori, Fumie [2 ]
Gondo, Takahiro [3 ]
Takahashi, Fuminori [1 ]
Shinozaki, Kazuo [1 ]
Kobayashi, Masatomo [1 ,2 ]
Akashi, Ryo [4 ]
机构
[1] RIKEN Ctr Sustainable Resource Sci, Biomass Engn Program Div, Biomass Res Platform Team, Tsukuba, Ibaraki 3050074, Japan
[2] RIKEN BioResource Ctr, Tsukuba, Ibaraki 3050074, Japan
[3] Miyazaki Univ, Frontier Sci Res Ctr, Miyazaki 8892192, Japan
[4] Miyazaki Univ, Fac Agr, Miyazaki 8892192, Japan
关键词
Arabidopsis thaliana galactinol synthase 2 (AtGolS2); Brachypodium distachyon; Drought tolerance; Particle bombardment; Transformation; BOMBARDMENT-MEDIATED TRANSIENT; EXPRESSION; GENE; TRANSFORMATION; PLANTS; GRASS; LOCALIZATION; PROTOCOL; STRESS;
D O I
10.1016/j.jplph.2014.04.007
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Brachypodium distachyon (purple false brome) is a herbaceous species belonging to the grass subfamily Pooideae, which also includes major crops like wheat, barley, oat and rye. The species has been established as experimental model organism for understanding and improving cereal crops and temperate grasses. The complete genome of Bd21, the community standard line of B. distachyon, has been sequenced and protocols for Agrobacterium-mediated transformation have been published. Further improvements to the experimental platform including better evaluation systems for transgenic plants are still needed. Here we describe the growth conditions for Bd21 plants yielding highly responsive immature embryos that can generate embryogenic calli for transformation. A prolonged 20-h photoperiod produced seeds with superior immature embryos. In addition, osmotic treatment of embryogenic calli enhanced the efficiency of transfection by particle bombardment. We generated transgenic plants expressing Arabidopsis thaliana galactinol synthase 2 (AtGolS2) in these experiments. AtGolS2-expressing transgenics displayed significantly improved drought tolerance, increasing with increased expression of AtGolS2. These results demonstrate that AtGolS2 can confer drought tolerance to monocots and confirm that Brachypodium is a useful model to further explore ways to understand and improve major monocot crop species. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:1127 / 1131
页数:5
相关论文
共 36 条
  • [1] Transgenic poplar trees overexpressing AtGolS2, a stress-responsive galactinol synthase gene derived from Arabidopsis thaliana, improved drought tolerance in a confined field
    Yuhei Shikakura
    Taichi Oguchi
    Xiang Yu
    Misato Ohtani
    Taku Demura
    Akira Kikuchi
    Kazuo N. Watanabe
    Transgenic Research, 2022, 31 : 579 - 591
  • [2] Transgenic poplar trees overexpressing AtGolS2, a stress-responsive galactinol synthase gene derived from Arabidopsis thaliana, improved drought tolerance in a confined field
    Shikakura, Yuhei
    Oguchi, Taichi
    Yu, Xiang
    Ohtani, Misato
    Demura, Taku
    Kikuchi, Akira
    Watanabe, Kazuo N.
    TRANSGENIC RESEARCH, 2022, 31 (4-5) : 579 - 591
  • [3] Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field
    Gomez Selvaraj, Michael
    Ishizaki, Takuma
    Valencia, Milton
    Ogawa, Satoshi
    Dedicova, Beata
    Ogata, Takuya
    Yoshiwara, Kyouko
    Maruyama, Kyonoshin
    Kusano, Miyako
    Saito, Kazuki
    Takahashi, Fuminori
    Shinozaki, Kazuo
    Nakashima, Kazuo
    Ishitani, Manabu
    PLANT BIOTECHNOLOGY JOURNAL, 2017, 15 (11) : 1465 - 1477
  • [4] Arsenic-induced galactinol synthase1 gene, AtGolS1, provides arsenic stress tolerance in Arabidopsis thaliana
    Ranjan, Avriti
    Gautam, Swati
    Michael, Rahul
    Shukla, Tapsi
    Trivedi, Prabodh Kumar
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2023, 207
  • [5] Raffinose synthase enhances drought tolerance through raffinose synthesis or galactinol hydrolysis in maize and Arabidopsis plants
    Li, Tao
    Zhang, Yumin
    Liu, Ying
    Li, Xudong
    Hao, Guanglong
    Han, Qinghui
    Dirk, Lynnette M. A.
    Downie, A. Bruce
    Ruan, Yong-Ling
    Wang, Jianmin
    Wang, Guoying
    Zhao, Tianyong
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2020, 295 (23) : 8064 - 8077
  • [6] Enhancement of abiotic stress tolerance in poplar by overexpression of key Arabidopsis stress response genes, AtSRK2C and AtGolS2
    Yu, Xiang
    Ohtani, Misato
    Kusano, Miyako
    Nishikubo, Nobuyuki
    Uenoyama, Misa
    Umezawa, Taishi
    Saito, Kazuki
    Shinozaki, Kazuo
    Demura, Taku
    MOLECULAR BREEDING, 2017, 37 (05)
  • [7] Enhancement of abiotic stress tolerance in poplar by overexpression of key Arabidopsis stress response genes, AtSRK2C and AtGolS2
    Xiang Yu
    Misato Ohtani
    Miyako Kusano
    Nobuyuki Nishikubo
    Misa Uenoyama
    Taishi Umezawa
    Kazuki Saito
    Kazuo Shinozaki
    Taku Demura
    Molecular Breeding, 2017, 37
  • [8] Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana
    Taji, T
    Ohsumi, C
    Iuchi, S
    Seki, M
    Kasuga, M
    Kobayashi, M
    Yamaguchi-Shinozaki, K
    Shinozaki, K
    PLANT JOURNAL, 2002, 29 (04): : 417 - 426
  • [9] Molecular, physiological, and agronomical characterization, in greenhouse and in field conditions, of soybean plants genetically modified with AtGolS2 gene for drought tolerance
    Honna, Patricia T.
    Fuganti-Pagliarini, Renata
    Ferreira, Leonardo C.
    Molinari, Mayla D. C.
    Marin, Silvana R. R.
    de Oliveira, Maria C. N.
    Farias, Jose R. B.
    Neumaier, Norman
    Mertz-Henning, Liliane M.
    Kanamori, Norihito
    Nakashima, Kazuo
    Takasaki, Hironori
    Urano, Kaoru
    Shinozaki, Kazuo
    Yamaguchi-Shinozaki, Kazuko
    Desiderio, Janete A.
    Nepomuceno, Alexandre L.
    MOLECULAR BREEDING, 2016, 36 (11)
  • [10] Molecular, physiological, and agronomical characterization, in greenhouse and in field conditions, of soybean plants genetically modified with AtGolS2 gene for drought tolerance
    Patricia T. Honna
    Renata Fuganti-Pagliarini
    Leonardo C. Ferreira
    Mayla D. C. Molinari
    Silvana R. R. Marin
    Maria C. N. de Oliveira
    José R. B. Farias
    Norman Neumaier
    Liliane M. Mertz-Henning
    Norihito Kanamori
    Kazuo Nakashima
    Hironori Takasaki
    Kaoru Urano
    Kazuo Shinozaki
    Kazuko Yamaguchi-Shinozaki
    Janete A. Desidério
    Alexandre L. Nepomuceno
    Molecular Breeding, 2016, 36