All-optical tunable wavelength conversion in opaque nonlinear nanostructures

被引:14
作者
Gao, Jiannan [1 ]
Vincenti, Maria Antonietta [2 ]
Frantz, Jesse [3 ]
Clabeau, Anthony [4 ]
Qiao, Xingdu [5 ]
Feng, Liang [5 ]
Scalora, Michael [6 ]
Litchinitser, Natalia M. [1 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[2] Univ Brescia, Dept Informat Engn, Via Branze 38, I-25123 Brescia, Italy
[3] US Naval Res Lab, 4555 Overlook Ave,SW, Washington, DC 20375 USA
[4] Univ Res Fdn, 6411 Ivy Ln 110, Greenbelt, MD 20770 USA
[5] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[6] US Army CCDC, Aviat & Missile Ctr, Redstone Arsenal, Huntsville, AL 35898 USA
基金
美国国家科学基金会;
关键词
all-optical tunabilitiy; chalcogenide; femtosecond optics; nonlinear metasurface; phase-locking; 2ND-HARMONIC GENERATION; LIGHT WAVES; BOUNDARY; BAND; NM;
D O I
10.1515/nanoph-2022-0078
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We demonstrate a simple, femtosecond-scale wavelength tunable, subwavelength-thick nanostructure that performs efficient wavelength conversion from the infrared to the ultraviolet. The output wavelength can be tuned by varying the input power of the infrared pump beam and/or relative delay of the control beam with respect to the pump beam, and does not require any external realignment of the system. The nanostructure is made of chalcogenide glass that possesses strong Kerr nonlinearity and high linear refractive index, leading to strong field enhancement at Mie resonances. Although, as many other materials, chalcogenide glasses absorb in the ultraviolet range, fundamental phase-locking mechanism between the pump and the inhomogeneous portion of the third-harmonic signal enables ultraviolet transmission with little or no absorption.
引用
收藏
页码:4027 / 4035
页数:9
相关论文
共 36 条
[1]  
Akozbek N., 2021, Front. Photon, V2, DOI [10.3389/fphot.2021.746341, DOI 10.3389/FPHOT.2021.746341]
[2]   Recent advances in ultraviolet photodetectors [J].
Alaie, Z. ;
Nejad, S. Mohammad ;
Yousefi, M. H. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2015, 29 :16-55
[3]   INTERACTIONS BETWEEN LIGHT WAVES IN A NONLINEAR DIELECTRIC [J].
ARMSTRONG, JA ;
BLOEMBERGEN, N ;
DUCUING, J ;
PERSHAN, PS .
PHYSICAL REVIEW, 1962, 127 (06) :1918-+
[4]   LIGHT WAVES AT BOUNDARY OF NONLINEAR MEDIA [J].
BLOEMBERGEN, N ;
PERSHAN, PS .
PHYSICAL REVIEW, 1962, 128 (02) :606-+
[5]   Inhibition of linear absorption in opaque materials using phase-locked harmonic generation [J].
Centini, Marco ;
Roppo, Vito ;
Fazio, Eugenio ;
Pettazzi, Federico ;
Sibilia, Concita ;
Haus, Joseph W. ;
Foreman, John V. ;
Akozbek, Neset ;
Bloemer, Mark J. ;
Scalora, Michael .
PHYSICAL REVIEW LETTERS, 2008, 101 (11)
[6]  
Eggleton BJ, 2011, NAT PHOTONICS, V5, P141, DOI [10.1038/nphoton.2011.309, 10.1038/NPHOTON.2011.309]
[7]   Complete spatial and temporal locking in phase-mismatched second-harmonic generation [J].
Fazio, Eugenio ;
Pettazzi, Federico ;
Centini, Marco ;
Chauvet, Mathieu ;
Belardini, Alessandro ;
Alonzo, Massimo ;
Sibilia, Concita ;
Bertolotti, Mario ;
Scalora, Michael .
OPTICS EXPRESS, 2009, 17 (05) :3141-3147
[8]   Progress in optical waveguides fabricated from chalcogenide glasses [J].
Gai, Xin ;
Han, Ting ;
Prasad, Amrita ;
Madden, Steve ;
Choi, Duk-Yong ;
Wang, Rongping ;
Bulla, Douglas ;
Luther-Davies, Barry .
OPTICS EXPRESS, 2010, 18 (25) :26635-26646
[9]   Near-infrared to ultra-violet frequency conversion in chalcogenide metasurfaces [J].
Gao, Jiannan ;
Vincenti, Maria Antonietta ;
Frantz, Jesse ;
Clabeau, Anthony ;
Qiao, Xingdu ;
Feng, Liang ;
Scalora, Michael ;
Litchinitser, Natalia M. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   SECOND-HARMONIC GENERATION BY PICOSECOND OPTICAL PULSES [J].
GLENN, WH .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1969, QE 5 (06) :284-&