New parameterized quantum integral inequalities via η-quasiconvexity

被引:42
作者
Nwaeze, Eze R. [1 ]
Tameru, Ana M. [2 ]
机构
[1] Alabama State Univ, Dept Math & Comp Sci, Montgomery, AL 36101 USA
[2] Tuskegee Univ, Dept Math, Tuskegee, AL 36088 USA
关键词
Hermite-Hadamard inequality; Convex functions; Quasiconvex functions; Quantum calculus; Midpoint inequality; MIDPOINT TYPE INEQUALITIES; FRACTIONAL INTEGRALS; CONVEX;
D O I
10.1186/s13662-019-2358-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish new quantum Hermite-Hadamard and midpoint types inequalities via a parameter mu is an element of [0, 1] for a function F whose vertical bar alpha DqF vertical bar(u) is eta-quasiconvex on [alpha, beta] with u >= 1. Results obtained in this paper generalize, sharpen, and extend some results in the literature. For example, see (Noor et al. in Appl. Math. Comput. 251: 675-679, 2015; Alp et al. in J. King Saud Univ., Sci. 30: 193-203, 2018) and (Kunt et al. in Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat. 112: 969-992, 2018). By choosing different values of mu, loads of novel estimates can be deduced. We also present some illustrative examples to show how some consequences of our results may be applied to derive more quantum inequalities.
引用
收藏
页数:12
相关论文
共 22 条
[1]  
Alomari M., RGMIA RES REP COLL S, V12
[2]   q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions [J].
Alp, Necmettin ;
Sarikaya, Mehmet Zeki ;
Kunt, Mehmet ;
Iscan, Imdat .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) :193-203
[3]   On Strongly Generalized Convex Functions [J].
Awan, Muhammad Uzair ;
Noor, Muhammad Aslam ;
Noor, Khalida Inayat ;
Safdar, Farhat .
FILOMAT, 2017, 31 (18) :5783-5790
[4]  
Chen FX, 2016, J COMPUT ANAL APPL, V21, P417
[5]   ON η-CONVEXITY [J].
Delavar, Mohsen Rostamian ;
Dragomir, Silvestru Sever .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01) :203-216
[6]   ON φ-CONVEX FUNCTIONS [J].
Gordji, M. Eshaghi ;
Delavar, M. Rostamian ;
De La Sen, M. .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (01) :173-183
[7]  
Gordji ME, 2015, INT J NONLINEAR ANAL, V6, P27
[8]  
Kac Victor, 2002, Quantum Calculus
[9]   Some new inequalities involving the Katugampola fractional integrals for strongly η-convex functions [J].
Kermausuor, Seth ;
Nwaeze, Eze R. .
TBILISI MATHEMATICAL JOURNAL, 2019, 12 (01) :117-130
[10]   New Integral Inequalities via the Katugampola Fractional Integrals for Functions Whose Second Derivatives Are Strongly η-Convex [J].
Kermausuor, Seth ;
Nwaeze, Eze R. ;
Tameru, Ana M. .
MATHEMATICS, 2019, 7 (02)