Prime filtrations of monomial ideals and polarizations

被引:43
作者
Jahan, Ali Soleyman [1 ]
机构
[1] Univ Duisburg Essen, Fachbereich Math & Informat, D-45117 Essen, Germany
关键词
prime filtrations; pretty clean modules; Stanley decompositions; multicomplexes;
D O I
10.1016/j.jalgebra.2006.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that an arbitrary monomial ideal I is pretty clean if and only if its polarization I-p is clean. This yields a new characterization of pretty clean monomial ideals in terms of the arithmetic degree, and it also implies that a multicomplex is shellable if and only the simplicial complex corresponding to its polarization is (non-pure) shellable. We also discuss Stanley decompositions in relation to prime filtrations. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1011 / 1032
页数:22
相关论文
共 14 条
[1]   On a conjecture of R. P. Stanley; part I - Monomial ideals [J].
Apel, J .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2003, 17 (01) :39-56
[2]  
Bayer D. A., 1982, Ph.D. dissertation
[3]  
Bruns W., 1996, COHEN MACAULAY RINGS
[4]  
Dress A., 1993, BEITR ALGEBRA GEOM, V34, P45
[5]  
Eisenbud D., 1995, GRAD TEXTS MATH
[6]  
HERZOG J, MATHAC0502282
[7]   Standard pairs and group relaxations in integer programming [J].
Hosten, S ;
Thomas, RR .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 139 (1-3) :133-157
[8]   Uniform bounds on multigraded regularity [J].
Maclagan, D ;
Smith, GG .
JOURNAL OF ALGEBRAIC GEOMETRY, 2005, 14 (01) :137-164
[9]  
MASUMURA H, 1986, COMMUTATIVE RING THE
[10]  
SCHENZEL P, 1999, P FERR M HON M FIOR