Fractional inversion in Krylov space

被引:22
作者
Bunk, B [1 ]
机构
[1] Humboldt Univ, Inst Phys, D-10115 Berlin, Germany
关键词
D O I
10.1016/S0920-5632(97)00952-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The fractional inverse M-gamma (real gamma > 0) of a matrix M is expanded in a series of Gegenbauer polynomials. If the spectrum of M is confined to an ellipse not including the origin, convergence is exponential, with the same rate as for Chebyshev inversion. The approximants can be improved recursively and lead to an iterative solver for M(gamma)x = b in Krylov space. In case of gamma = 1/2, the expansion is in terms of Legendre polynomials, and rigorous bounds for the truncation error are derived.
引用
收藏
页码:952 / 954
页数:3
相关论文
共 4 条
[1]   SYSTEMATIC-ERRORS OF LUSCHERS FERMION METHOD AND ITS EXTENSIONS [J].
BORICI, A ;
DEFORCRAND, P .
NUCLEAR PHYSICS B, 1995, 454 (03) :645-660
[2]  
BUNK B, IN PRESS
[3]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[4]   TCHEBYCHEV ITERATION FOR NONSYMMETRIC LINEAR-SYSTEMS [J].
MANTEUFFEL, TA .
NUMERISCHE MATHEMATIK, 1977, 28 (03) :307-327