Generalized triangular matrix rings and the fully invariant extending property

被引:41
作者
Birkenmeier, GF [1 ]
Park, JK
Rizvi, ST
机构
[1] Univ SW Louisiana, Dept Math, Lafayette, LA 70504 USA
[2] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
[3] Ohio State Univ, Dept Math, Lima, OH 45804 USA
关键词
D O I
10.1216/rmjm/1181070024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A module M is called (strongly) FI-extending if every fully invariant submodule of M is essential in a (fully invariant) direct summand of M. A ring R with unity is called quasi-Baer if the right annihilator of every ideal is generated, as a right ideal, by an idempotent. For semi-prime rings the FI-extending condition, strongly FI-extending condition and quasi-Baer condition are equivalent. In this paper we fully characterize the 2-by-2 generalized (or formal) triangular matrix rings which are either (right) FI-extending, (right) strongly FI-extending, or quasi-Baer. Examples are provided to illustrate and delimit our results.
引用
收藏
页码:1299 / 1319
页数:21
相关论文
共 13 条
[1]   Triangular matrix representations [J].
Birkenmeier, GF ;
Heatherly, HE ;
Kim, JY ;
Park, JK .
JOURNAL OF ALGEBRA, 2000, 230 (02) :558-595
[2]   Modules with fully invariant submodules essential in fully invariant summands [J].
Birkenmeier, GF ;
Park, JK ;
Rizvi, ST .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (04) :1833-1852
[3]   Modules in which every fully invariant submodule is essential in a direct summand [J].
Birkenmeier, GF ;
Müller, BJ ;
Rizvi, ST .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (03) :1395-1415
[4]   The fully invariant extending property for abelian groups [J].
Birkenmeier, GF ;
Calugareanu, G ;
Fuchs, L ;
Goeters, HP .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (02) :673-685
[5]  
Birkner G, 2001, SALES MARK MANAG, P67
[6]   ENDOMORPHISM-RINGS OF MODULES OVER NON-SINGULAR CS RINGS [J].
CHATTERS, AW ;
KHURI, SM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (JUN) :434-444
[7]  
FAITH C, 1984, LONDON MATH SOC LECT, V88
[8]   Study of modules over formal triangular matrix rings [J].
Haghany, A ;
Varadarajan, K .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 147 (01) :41-58
[9]   Study of formal triangular matrix rings [J].
Haghany, A ;
Varadarajan, K .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (11) :5507-5525