Mean curvature flow via convex functions on Grassmannian manifolds

被引:1
|
作者
Xin, Yuanlong [1 ]
Yang, Ling [2 ]
机构
[1] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
[2] Max Planck Inst Math Sci, D-04103 Leibzig, Germany
基金
中国国家自然科学基金;
关键词
Mean curvature flow; Convex function; Gauss map; LAGRANGIAN SUBMANIFOLDS; THEOREMS;
D O I
10.1007/s11401-009-0173-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the convex functions on Grassmannian manifolds, the authors obtain the interior estimates for the mean curvature flow of higher codimension. Confinable properties of Gauss images under the mean curvature flow have been obtained, which reveal that if the Gauss image of the initial submanifold is contained in a certain sublevel set of the upsilon-function, then all the Gauss images of the submanifolds under the mean curvature flow are also contained in the same sublevel set of the upsilon-function. Under such restrictions, curvature estimates in terms of upsilon-function composed with the Gauss map can be carried out.
引用
收藏
页码:315 / 328
页数:14
相关论文
共 50 条
  • [31] Convergence of Lagrangian mean curvature flow in Kahler-Einstein manifolds
    Li, Haozhao
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (1-2) : 313 - 342
  • [32] Isoparametric Hypersurfaces of Riemannian Manifolds as Initial Data for the Mean Curvature Flow
    Guimaraes, Felippe
    dos Santos, Joao Batista Marques
    dos Santos, Joao Paulo
    RESULTS IN MATHEMATICS, 2024, 79 (02)
  • [33] Isoparametric Hypersurfaces of Riemannian Manifolds as Initial Data for the Mean Curvature Flow
    Felippe Guimarães
    João Batista Marques dos Santos
    João Paulo dos Santos
    Results in Mathematics, 2024, 79
  • [34] Hyper-Lagrangian submanifolds of hyperkahler manifolds and mean curvature flow
    Leung, Naichung Conan
    Wan, Tom Y. H.
    JOURNAL OF GEOMETRIC ANALYSIS, 2007, 17 (02) : 343 - 364
  • [35] Convex mean curvature flow with a forcing term in direction of the position vector
    Li, Guang Han
    Mao, Jing
    Wu, Chuan Xi
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (02) : 313 - 332
  • [36] Singularities of mean convex level set flow in general ambient manifolds
    Haslhofer, Robert
    Hershkovits, Or
    ADVANCES IN MATHEMATICS, 2018, 329 : 1137 - 1155
  • [37] Convex Mean Curvature Flow with a Forcing Term in Direction of the Position Vector
    Guang Han LI
    Jing MAO
    Chuan Xi WU
    Acta Mathematica Sinica,English Series, 2012, (02) : 313 - 332
  • [38] Convex mean curvature flow with a forcing term in direction of the position vector
    Guang Han Li
    Jing Mao
    Chuan Xi Wu
    Acta Mathematica Sinica, English Series, 2012, 28 : 313 - 332
  • [39] A Finiteness Theorem Via the Mean Curvature Flow with Surgery
    Alexander Mramor
    The Journal of Geometric Analysis, 2018, 28 : 3348 - 3372
  • [40] Contour parametrization via anisotropic mean curvature flow
    Suarez-Serrato, Pablo
    Richards, E. I. Velazquez
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 441