Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

被引:84
作者
Huang, Wei [1 ,2 ]
Li, Shuo [1 ]
Cao, Xianyi [2 ]
Hou, Chengyi [2 ]
Zhang, Zhen [1 ]
Feng, Jinkui [1 ]
Ci, Lijie [1 ]
Si, Pengchao [1 ]
Chi, Qijin [2 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, SDU & Rice Joint Ctr Carbon Nanomat, Key Lab Liquid Solid Struct Evolut & Proc Mat,Min, Jinan 250061, Peoples R China
[2] Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2017年 / 5卷 / 06期
关键词
Carbon-coated nanomaterial; Iron sulfide; Metal-organic framework; One-pot templated synthesis; Lithium-ion storage; REDUCED GRAPHENE OXIDE; HIGH-RATE PERFORMANCE; LITHIUM ION BATTERIES; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; ELECTRODE MATERIALS; MICROPOROUS CARBON; POROUS STRUCTURE; STORAGE;
D O I
10.1021/acssuschemeng.7b00430
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the design and nanoengineering of carbon-film-coated iron sulfide nanorods (C@Fe7S8) as an advanced conversion-type lithium-ion storage material. The structural advantages of the iron-based metal-organic framework (MIL-88-Fe) as both a sacrificed template and a precursor are explored to prepare carbon-encapsulated ploy iron sulfide through solid-state chemical sulfurizing. The resulting core-shell nanorods consisting of approximately 13% carbon and 87% Fe7S8 have a hierarchically porous structure and a very high specific surface area of 277 m(2) g(-1). When tested for use in fabrication of a redox conversion-type lithium-ion battery, this composite material has demonstrated high lithium-ion storage capacity at 1148 mA h g(-1) under the current rate of 500 mA g(-1) for 170 cycles and an impressive rate-retention capability at 657 mA h g(-1) with a current density of 2000 mA On the basis of systematic structural analysis and microscopic mapping, we discuss the charge-discharge mechanisms and the crucial factors associated with the stability and structural changes upon charge-discharge cycling.
引用
收藏
页码:5039 / 5048
页数:10
相关论文
共 54 条
[1]   Fluoride based electrode materials for advanced energy storage devices [J].
Amatucci, Glenn G. ;
Pereira, Nathalie .
JOURNAL OF FLUORINE CHEMISTRY, 2007, 128 (04) :243-262
[2]   Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide [J].
Anbia, Mansoor ;
Hoseini, Vahid .
CHEMICAL ENGINEERING JOURNAL, 2012, 191 :326-330
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Superior lithium storage properties of α-Fe2O3 nano-assembled spindles [J].
Banerjee, Abhik ;
Aravindan, Vanchiappan ;
Bhatnagar, Sumit ;
Mhamane, Dattakumar ;
Madhavi, Srinivasan ;
Ogale, Satishchandra .
NANO ENERGY, 2013, 2 (05) :890-896
[5]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[6]   Facile Synthesis of Highly Uniform Fe-MIL-88B Particles [J].
Cai, Xuechao ;
Lin, Jun ;
Pang, Maolin .
CRYSTAL GROWTH & DESIGN, 2016, 16 (07) :3565-3568
[7]   2D sandwich-like carbon-coated ultrathin TiO2@defect-rich MoS2 hybrid nanosheets: Synergistic-effect-promoted electrochemical performance for lithium ion batteries [J].
Chen, Biao ;
Liu, Enzuo ;
He, Fang ;
Shi, Chunsheng ;
He, Chunnian ;
Li, Jiajun ;
Zhao, Naiqin .
NANO ENERGY, 2016, 26 :541-549
[8]   Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance [J].
Fei, Ling ;
Lin, Qianglu ;
Yuan, Bin ;
Chen, Gen ;
Xie, Pu ;
Li, Yuling ;
Xu, Yun ;
Deng, Shuguang ;
Smirnov, Sergei ;
Luo, Hongmei .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (11) :5330-5335
[9]   Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries [J].
Feng, Jinkui ;
Zhang, Zhen ;
Ci, Lijie ;
Zhai, Wei ;
Ai, Qing ;
Xiong, Shenglin .
JOURNAL OF POWER SOURCES, 2015, 287 :177-183
[10]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107