Rankin-Cohen brackets and formal quantization

被引:17
作者
Bieliavsky, Pierre
Tang, Xiang [1 ]
Yao, Yijun
机构
[1] Washington Univ, Dept Math, St Louis, MO 63130 USA
[2] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
[3] Ecole Polytech, Ctr Math Ecole Polytech, F-91128 Palaiseau, France
关键词
modular forms; Rankin-Cohen brackets; hopf algebra; deformation quantization;
D O I
10.1016/j.aim.2006.10.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the theory of deformation quantization to understand Connes' and Moscovici's results [A. Connes, H. Moscovici, Rankin-Cohen brackets and the Hopf algebra of transverse geometry, Mosc. Math. J. 4 (1) (2004) 111-130, 311]. We use Fedosov's method of deformation quantization of symplectic manifolds to reconstruct Zagier's deformation [D. Zagier, Modular forms and differential operators, in: K.G. Ramanathan Memorial Issue, Proc. Indian Acad. Sci. Math. Sci. 104 (1) (1994) 57-75] of modular forms, and relate this deformation to the Weyl-Moyal product. We also show that the projective structure introduced by Connes and Moscovici is equivalent to the existence of certain geometric data in the case of foliation groupoids. Using the methods developed by the second author [X. Tang, Deformation quantization of pseudo (symplectic) Poisson groupoids, Geom. Funct. Anal. 16 (3) (2006) 731-766], we reconstruct a universal deformation formula of the Hopf algebra H-1 associated to codimension one foliations. In the end, we prove that the first Rankin-Cohen bracket RC1 defines a noncommutative Poisson structure for an arbitrary HI action. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:293 / 314
页数:22
相关论文
共 11 条
[1]  
BIELIAVSKY P, UNPUB
[2]  
BRESSLER P, ARXIVMATHQA0512136
[3]  
Cohen P.B., 1997, Progress in Nonlinear Differential Equations and Their Applications, V26, P17
[4]   MODULAR HECKE ALGEBRAS AND THEIR HOPF SYMMETRY [J].
Connes, Alain ;
Moscovici, Henri .
MOSCOW MATHEMATICAL JOURNAL, 2004, 4 (01) :67-109
[5]   RANKIN-COHEN BRACKETS AND THE HOPF ALGEBRA OF TRANSVERSE GEOMETRY [J].
Connes, Alain ;
Moscovici, Henri .
MOSCOW MATHEMATICAL JOURNAL, 2004, 4 (01) :111-130
[6]  
Fedosov B., 1996, MATH TOPICS, V9
[7]   Bialgebra actions, twists, and universal deformation formulas [J].
Giaquinto, A ;
Zhang, JJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 128 (02) :133-151
[8]  
Gutt S., 1983, THESIS U LIBRE BRUXE
[9]  
TANG X, 2004, THESIS UC BERKELEY
[10]   Deformation quantization of pseudo-symplectic (Poisson) groupoids [J].
Tang, Xiang .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2006, 16 (03) :731-766