One year in the Earth's magnetosphere: A global MHD simulation and spacecraft measurements

被引:12
|
作者
Facsko, G. [1 ,2 ]
Honkonen, I. [2 ,3 ]
Zivkovic, T. [4 ,5 ]
Palin, L. [4 ]
Kallio, E. [6 ]
Agren, K. [4 ]
Opgenoorth, H. [4 ]
Tanskanen, E. I. [7 ]
Milan, S. [8 ]
机构
[1] Hungarian Acad Sci, Res Ctr Astron & Earth Sci, Geodet & Geophys Inst, Sopron, Hungary
[2] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[4] Swedish Inst Space Phys, Uppsala, Sweden
[5] DNV GL, Res & Innovat, Hovik, Norway
[6] Aalto Univ, Sch Elect Engn, Espoo, Finland
[7] Aalto Univ, ReSoLVE Ctr Excellence, ELEC Dept Radio Sci & Engn, Espoo, Finland
[8] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England
基金
欧洲研究理事会; 芬兰科学院; 匈牙利科学研究基金会;
关键词
MAGNETIC-FIELD; BOW SHOCK; CLUSTER; IONOSPHERE; MISSION; MODEL; MAGNETOPAUSE; PERFORMANCE; PLASMA; SHAPE;
D O I
10.1002/2015SW001355
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The response of the Earth's magnetosphere to changing solar wind conditions is studied with a 3-D Magnetohydrodynamic (MHD) model. One full year (155 Cluster orbits) of the Earth's magnetosphere is simulated using Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS-4) magnetohydrodynamic code. Real solar wind measurements are given to the code as input to create the longest lasting global magnetohydrodynamics simulation to date. The applicability of the results of the simulation depends critically on the input parameters used in the model. Therefore, the validity and the variance of the OMNIWeb data are first investigated thoroughly using Cluster measurement close to the bow shock. The OMNIWeb and the Cluster data were found to correlate very well before the bow shock. The solar wind magnetic field and plasma parameters are not changed significantly from the L-1 Lagrange point to the foreshock; therefore, the OMNIWeb data are appropriate input to the GUMICS-4. The Cluster SC3 footprints are determined by magnetic field mapping from the simulation results and the Tsyganenko (T96) model in order to compare two methods. The determined footprints are in rather good agreement with the T96. However, it was found that the footprints agree better in the Northern Hemisphere than the Southern one during quiet conditions. If the B-y is not zero, the agreement of the GUMICS-4 and T96 footprint is worse in longitude in the Southern Hemisphere. Overall, the study implies that a 3-D MHD model can increase our insight of the response of the magnetosphere to solar wind conditions.
引用
收藏
页码:351 / 367
页数:17
相关论文
共 50 条
  • [21] Comparison of lunar and terrestrial ion measurements obtained by the WIND and GEOTAIL spacecraft outside and inside the Earth's magnetosphere
    Kirsch, E.
    Wilken, B.
    Gloeckler, G.
    Galvin, A.B.
    Mall, U.
    Hovestadt, D.
    Advances in Space Research, 20 (4-5): : 845 - 849
  • [22] Response of the Earth's Magnetosphere and Ionosphere to Solar Wind Driver and Ionosphere Load: Results of Global MHD Simulations
    Xiong Ming
    Peng Zhong
    Hu You-Qiu
    Zheng Hui-Nan
    CHINESE PHYSICS LETTERS, 2009, 26 (01)
  • [23] STUDIES OF MHD OSCILLATIONS OF THE EARTH'S INNER MAGNETOSPHERE IN THE RESONANCE MISSION
    Cheremnykh, O. K.
    Yampolski, Yu. M.
    Agapitov, O. V.
    Zalizovski, A. V.
    Ivchenko, V. N.
    Kozak, L. V.
    Parnovski, A. S.
    Rapoport, Yu. G.
    Selivanov, Yu. A.
    Koloskov, A. V.
    Cheremnykh, S. O.
    SPACE SCIENCE AND TECHNOLOGY-KOSMICNA NAUKA I TEHNOLOGIA, 2013, 19 (02): : 5 - 42
  • [24] REVIEW AND COMPARISON OF MHD WAVE CHARACTERISTICS AT THE SUN AND IN EARTH'S MAGNETOSPHERE
    Chelpanov, M. A.
    Anfinogentov, S. A.
    Kostarev, D. V.
    Mikhailova, O. S.
    Rubtsov, A. V.
    Fedenev, V. V.
    Chelpanov, A. A.
    SOLAR-TERRESTRIAL PHYSICS, 2022, 8 (04): : 3 - 27
  • [25] A global MHD simulation of the Jovian magnetosphere interacting with/without the interplanetary magnetic field
    Miyoshi, T
    Kusano, K
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2001, 106 (A6) : 10723 - 10742
  • [26] Self-consistent inner magnetosphere simulation driven by a global MHD model
    Zaharia, Sorin
    Jordanova, V. K.
    Welling, D.
    Toth, G.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
  • [27] On the performance of global magnetohydrodynamic models in the Earth's magnetosphere
    Honkonen, I.
    Rastaetter, L.
    Grocott, A.
    Pulkkinen, A.
    Palmroth, M.
    Raeder, J.
    Ridley, A. J.
    Wiltberger, M.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2013, 11 (05): : 313 - 326
  • [28] The GUMICS-4 global MHD magnetosphere-ionosphere coupling simulation
    Janhunen, P.
    Palmroth, M.
    Laitinen, T.
    Honkonen, I.
    Juusola, L.
    Facsko, G.
    Pulkkinen, T. I.
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2012, 80 : 48 - 59
  • [29] POWER LOSSES FOR SOLAR ARRAYS OF A SPACECRAFT IN THE EARTH'S POLAR IONOSPHERE AND MAGNETOSPHERE
    Shuvalov, V. A.
    Pismenny, N. I.
    Kochubey, G. S.
    Nosikov, S. V.
    SPACE SCIENCE AND TECHNOLOGY-KOSMICNA NAUKA I TEHNOLOGIA, 2011, 17 (03): : 5 - 15
  • [30] ON THE POLARIZATION OF TRANSVERSALLY SMALL-SCALE MHD MODES IN THE EARTH'S MAGNETOSPHERE
    Cheremnykh, S. O.
    SPACE SCIENCE AND TECHNOLOGY-KOSMICNA NAUKA I TEHNOLOGIA, 2013, 19 (04): : 57 - 64