On Liouville type theorems for the stationary MHD and Hall-MHD systems

被引:18
作者
Chae, Dongho [1 ,2 ]
Wolf, Jorg [1 ]
机构
[1] Chung Ang Univ, Dept Math, Heukseok Ro 84, Seoul 06974, South Korea
[2] Korea Inst Adv Study, Sch Math, Hoegi Ro 85, Seoul 02455, South Korea
关键词
Stationary magnetohydrodynamics equations; Hall-MHD system; Liouville type theorem; NAVIER-STOKES EQUATIONS;
D O I
10.1016/j.jde.2021.05.061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a Liouville type theorem for the stationary magnetohydrodynamics (MHD) system in R-3. Let (v, B, p) be a smooth solution to the stationary MHD equations in R-3. We show that if there exist smooth matrix valued potential functions Phi, Psi such that del. Phi = v and del. Psi = B, whose L-6 mean oscillations have certain growth condition near infinity, namely -integral(B(r)) vertical bar Phi - Phi(B(r))vertical bar(6)dx + -integral(B(r)) vertical bar Psi - Psi(B(r))vertical bar(6)dx <= Cr for all 1 < r < +infinity, then v = B = 0 and p = constant. With additional assumption of r(-8) integral(B(r)) vertical bar B - B-B(r)vertical bar(6)dx -> 0 as r -> +infinity, similar result holds also for the Hall-MHD system. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:233 / 248
页数:16
相关论文
共 17 条
[1]   On Liouville type theorem for the stationary Navier-Stokes equations [J].
Chae, Dongho ;
Wolf, Jorg .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (03)
[2]   On Liouville type theorems for the steady Navier-Stokes equations in R3 [J].
Chae, Dongho ;
Wolf, Joerg .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (10) :5541-5560
[3]   Well-posedness for Hall-magnetohydrodynamics [J].
Chae, Dongho ;
Degond, Pierre ;
Liu, Jian-Guo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03) :555-565
[4]   Liouville-Type Theorems for the Forced Euler Equations and the Navier-Stokes Equations [J].
Chae, Dongho .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (01) :37-48
[5]   On the Liouville theorem for the stationary Navier-Stokes equations in a critical space [J].
Chae, Dongho ;
Yoneda, Tsuyoshi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (02) :706-710
[6]  
Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9
[7]  
Giaquinta Mariano, 1983, ANN MATH STUD, V105
[8]  
Gilbarg D., 1978, Ann. Sc. Norm. Super. Pisa, V5, P381
[9]   A remark on the Liouville problem for stationary Navier-Stokes equations in Lorentz and Morrey spaces [J].
Jarrin, Oscar .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (10)
[10]   Liouville theorems for the Navier-Stokes equations and applications [J].
Koch, Gabriel ;
Nadirashvili, Nikolai ;
Seregin, Gregory A. ;
Sverak, Vladimir .
ACTA MATHEMATICA, 2009, 203 (01) :83-105