Anisotropic fluid spheres of embedding class one using Karmarkar condition

被引:106
作者
Maurya, S. K. [1 ]
Maharaj, S. D. [2 ]
机构
[1] Univ Nizwa, Coll Arts & Sci, Dept Math & Phys Sci, Nizwa, Oman
[2] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Private Bag X54001, ZA-4000 Durban, South Africa
来源
EUROPEAN PHYSICAL JOURNAL C | 2017年 / 77卷 / 05期
基金
新加坡国家研究基金会;
关键词
EQUATION-OF-STATE; CHARGED COMPACT STARS; GENERAL-RELATIVITY; DESCRIBING INTERIOR; NEW-MODEL; STABILITY; SPACETIME; OBJECTS; MASS; CRACKING;
D O I
10.1140/epjc/s10052-017-4905-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We obtain a new anisotropic solution for spherically symmetric spacetimes by analyzing the Karmarkar embedding condition. For this purpose we construct a suitable form of one of the gravitational potentials to obtain a closed form solution. This form of the remaining gravitational potential allows us to solve the embedding equation and integrate the field equations. The resulting new anisotropic solution is well behaved, which can be utilized to construct realistic static fluid spheres. Also we estimated the masses and radii of fluid spheres for LMC X-4, EXO 1785248, PSR J1903+327 and 4U 1820-30 by using observational data set values. The masses and radii obtained show that our anisotropic solution can represent fluid spheres to a very good degree of accuracy. The physical validity of the solution depends on the parameter values of a, b and c. The solution is well behaved for the wide range of parameters values 0.00393 <= a <= 0.0055, 0.0002 <= b <= 0.0025 and 0.0107 <= c <= 0.0155. The range of corresponding physical parameters for the different compact stars are 0.3266 <= v(r0) <= 0.3708, 0.1583 <= v(t0) <= 0.2558, 0.3256 <= zs <= 0.4450 and 4.3587 <= Gamma 0 <= 5.6462.
引用
收藏
页数:13
相关论文
共 43 条
[31]   Anisotropic charged stellar models in Generalized Tolman IV spacetime [J].
Murad, Mohammad Hassan ;
Fatema, Saba .
EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (01)
[32]   Compact stars with quadratic equation of state [J].
Ngubelanga, Sifiso A. ;
Maharaj, Sunil D. ;
Ray, Subharthi .
ASTROPHYSICS AND SPACE SCIENCE, 2015, 357 (01) :1-9
[33]   Compact stars with linear equation of state in isotropic coordinates [J].
Ngubelanga, Sifiso A. ;
Maharaj, Sunil D. ;
Ray, Subharthi .
ASTROPHYSICS AND SPACE SCIENCE, 2015, 357 (01)
[34]   INSUFFICIENCY OF KARMARKARS CONDITION [J].
PANDEY, SN ;
SHARMA, SP .
GENERAL RELATIVITY AND GRAVITATION, 1982, 14 (02) :113-115
[35]   RELATIVISTIC STELLAR MODEL ADMITTING A QUADRATIC EQUATION OF STATE [J].
Sharma, R. ;
Ratanpal, B. S. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2013, 22 (13)
[36]   A 4D spacetime embedded in a 5D pseudo-Euclidean space describing interior of compact stars [J].
Singh, Ksh. Newton ;
Murad, Mohammad Hassan ;
Pant, Neeraj .
EUROPEAN PHYSICAL JOURNAL A, 2017, 53 (02)
[37]   A family of well-behaved Karmarkar spacetimes describing interior of relativistic stars [J].
Singh, Ksh. Newton ;
Pant, Neeraj .
EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (10)
[38]   Solutions of the Einstein's field equations with anisotropic pressure compatible with cold star model [J].
Singh, Ksh. Newton ;
Bhar, Piyali ;
Pant, Neeraj .
ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (10)
[39]  
Stephani H, 2003, EXACT SOLUTION EINST
[40]  
Straumann N., 1984, General Relativity and Relativistic Astrophysics, DOI 10.1007/978-3-642-84439-3