Anisotropic fluid spheres of embedding class one using Karmarkar condition

被引:106
作者
Maurya, S. K. [1 ]
Maharaj, S. D. [2 ]
机构
[1] Univ Nizwa, Coll Arts & Sci, Dept Math & Phys Sci, Nizwa, Oman
[2] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Private Bag X54001, ZA-4000 Durban, South Africa
来源
EUROPEAN PHYSICAL JOURNAL C | 2017年 / 77卷 / 05期
基金
新加坡国家研究基金会;
关键词
EQUATION-OF-STATE; CHARGED COMPACT STARS; GENERAL-RELATIVITY; DESCRIBING INTERIOR; NEW-MODEL; STABILITY; SPACETIME; OBJECTS; MASS; CRACKING;
D O I
10.1140/epjc/s10052-017-4905-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We obtain a new anisotropic solution for spherically symmetric spacetimes by analyzing the Karmarkar embedding condition. For this purpose we construct a suitable form of one of the gravitational potentials to obtain a closed form solution. This form of the remaining gravitational potential allows us to solve the embedding equation and integrate the field equations. The resulting new anisotropic solution is well behaved, which can be utilized to construct realistic static fluid spheres. Also we estimated the masses and radii of fluid spheres for LMC X-4, EXO 1785248, PSR J1903+327 and 4U 1820-30 by using observational data set values. The masses and radii obtained show that our anisotropic solution can represent fluid spheres to a very good degree of accuracy. The physical validity of the solution depends on the parameter values of a, b and c. The solution is well behaved for the wide range of parameters values 0.00393 <= a <= 0.0055, 0.0002 <= b <= 0.0025 and 0.0107 <= c <= 0.0155. The range of corresponding physical parameters for the different compact stars are 0.3266 <= v(r0) <= 0.3708, 0.1583 <= v(t0) <= 0.2558, 0.3256 <= zs <= 0.4450 and 4.3587 <= Gamma 0 <= 5.6462.
引用
收藏
页数:13
相关论文
共 43 条
[1]   Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects [J].
Abreu, H. ;
Hernandez, H. ;
Nunez, L. A. .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (18) :4631-4645
[2]   Compact star modeling with quadratic equation of state in Tolman VII space-time [J].
Bhar, P. ;
Singh, K. N. ;
Pant, N. .
INDIAN JOURNAL OF PHYSICS, 2017, 91 (06) :701-709
[3]   A charged anisotropic well-behaved Adler-Finch-Skea solution satisfying Karmarkar condition [J].
Bhar, Piyali ;
Singh, Ksh. Newton ;
Rahaman, Farook ;
Pant, Neeraj ;
Banerjee, Sumita .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2017, 26 (08)
[4]   Modelling of anisotropic compact stars of embedding class one [J].
Bhar, Piyali ;
Maurya, S. K. ;
Gupta, Y. K. ;
Manna, Tuhina .
EUROPEAN PHYSICAL JOURNAL A, 2016, 52 (10)
[5]   Bounds on the basic physical parameters for anisotropic compact general relativistic objects [J].
Bohmer, C. G. ;
Harko, T. .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (22) :6479-6491
[7]   ANISOTROPIC SPHERES IN GENERAL RELATIVITY [J].
BOWERS, RL ;
LIANG, EPT .
ASTROPHYSICAL JOURNAL, 1974, 188 (03) :657-665
[8]   GENERAL RELATIVISTIC FLUID SPHERES [J].
BUCHDAHL, HA .
PHYSICAL REVIEW, 1959, 116 (04) :1027-1034
[9]   Bell violation in the sky [J].
Choudhury, Sayantan ;
Panda, Sudhakar ;
Singh, Rajeev .
EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (02)
[10]   Anisotropic stars II: Stability [J].
Dev, K ;
Gleiser, M .
GENERAL RELATIVITY AND GRAVITATION, 2003, 35 (08) :1435-1457