Roadmap of Spin-Orbit Torques

被引:329
|
作者
Shao, Qiming [1 ]
Li, Peng [2 ]
Liu, Luqiao [3 ]
Yang, Hyunsoo [4 ]
Fukami, Shunsuke [5 ]
Razavi, Armin [6 ]
Wu, Hao [6 ]
Wang, Kang [6 ]
Freimuth, Frank [7 ,8 ]
Mokrousov, Yuriy [7 ,8 ]
Stiles, Mark D. [9 ]
Emori, Satoru [10 ]
Hoffmann, Axel [11 ]
Akerman, Johan [12 ]
Roy, Kaushik [13 ]
Wang, Jian-Ping [14 ]
Yang, See-Hun [15 ]
Garello, Kevin [16 ,17 ]
Zhang, Wei [18 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
[2] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA
[3] MIT, Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[5] Tohoku Univ, Res Inst Elect Commun, Sendai, Miyagi 9808577, Japan
[6] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[7] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[8] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany
[9] NIST, Alternat Comp Grp, Gaithersburg, MD 20899 USA
[10] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA
[11] Univ Illinois, Dept Mat Sci & Engn, Champaign, IL 61820 USA
[12] Univ Gothenburg, Phys Dept, S-40530 Gothenburg, Sweden
[13] Purdue Univ, Dept Elect & Comp Engn, W Lafayette, IN 47907 USA
[14] Univ Minnesota, Elect & Comp Engn Dept, Minneapolis, MN 55455 USA
[15] IBM Res Almaden, San Jose, CA 95120 USA
[16] IMEC, B-3001 Leuven, Belgium
[17] Univ Grenoble Alpes, CEA, CNRS, Grenoble INP,SPINTEC, F-38000 Grenoble, France
[18] Oakland Univ, Phys Dept, Rochester, MI 48309 USA
基金
美国国家科学基金会; 日本学术振兴会;
关键词
Magnetic devices; magnetic materials; magnetic memory; spin-orbit torques (SOTs); ELECTRIC-FIELD CONTROL; TO-CHARGE CONVERSION; FERROMAGNETIC-RESONANCE LINEWIDTH; CURRENT-DRIVEN DYNAMICS; ROOM-TEMPERATURE; TOPOLOGICAL INSULATOR; MAGNETIC INSULATOR; PERPENDICULAR MAGNETIZATION; THIN-FILMS; SOT-MRAM;
D O I
10.1109/TMAG.2021.3078583
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spin-orbit torque (SOT) is an emerging technology that enables the efficient manipulation of spintronic devices. The initial processes of interest in SOTs involved electric fields, spin-orbit coupling, conduction electron spins, and magnetization. More recently, interest has grown to include a variety of other processes that include phonons, magnons, or heat. Over the past decade, many materials have been explored to achieve a larger SOT efficiency. Recently, holistic design to maximize the performance of SOT devices has extended material research from a nonmagnetic layer to a magnetic layer. The rapid development of SOT has spurred a variety of SOT-based applications. In this article, we first review the theories of SOTs by introducing the various mechanisms thought to generate or control SOTs, such as the spin Hall effect, the Rashba-Edelstein effect, the orbital Hall effect, thermal gradients, magnons, and strain effects. Then, we discuss the materials that enable these effects, including metals, metallic alloys, topological insulators, 2-D materials, and complex oxides. We also discuss the important roles in SOT devices of different types of magnetic layers, such as magnetic insulators, antiferromagnets, and ferrimagnets. Afterward, we discuss device applications utilizing SOTs. We discuss and compare three- and two-terminal SOT-magnetoresistive random access memories (MRAMs); we mention various schemes to eliminate the need for an external field. We provide technological application considerations for SOT-MRAM and give perspectives on SOT-based neuromorphic devices and circuits. In addition to SOT-MRAM, we present SOT-based spintronic terahertz generators, nano-oscillators, and domain-wall and skyrmion racetrack memories. This article aims to achieve a comprehensive review of SOT theory, materials, and applications, guiding future SOT development in both the academic and industrial sectors.
引用
收藏
页数:39
相关论文
共 50 条
  • [31] Direct and indirect spin current generation and spin-orbit torques in ferromagnet/nonmagnet/ferromagnet trilayers
    Amin, V. P.
    Flores, G. G. Baez
    Kovalev, A. A.
    Belashchenko, K. D.
    PHYSICAL REVIEW B, 2024, 110 (21)
  • [32] Discrimination of skyrmion chirality via spin-orbit and -transfer torques for logic operation
    Nakatani, Yoshinobu
    Yamada, Keisuke
    Hirohata, Atsufumi
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [33] Field-Free Deterministic Magnetization Switching Induced by Interlaced Spin-Orbit Torques
    Wang, Min
    Wang, Zhaohao
    Wang, Chao
    Zhao, Weisheng
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (17) : 20763 - 20769
  • [34] Magneto-optical investigation of spin-orbit torques in metallic and insulating magnetic heterostructures
    Montazeri, Mohammad
    Upadhyaya, Pramey
    Onbasli, Mehmet C.
    Yu, Guoqiang
    Wong, Kin L.
    Lang, Murong
    Fan, Yabin
    Li, Xiang
    Amiri, Pedram Khalili
    Schwartz, Robert N.
    Ross, Caroline A.
    Wang, Kang L.
    NATURE COMMUNICATIONS, 2015, 6
  • [35] Spin-orbit torques and Dzyaloshinskii-Moriya interaction in PtMn/[Co/Ni] heterostructures
    DuttaGupta, S.
    Kanemura, T.
    Zhang, C.
    Kurenkov, A.
    Fukami, S.
    Ohno, H.
    APPLIED PHYSICS LETTERS, 2017, 111 (18)
  • [36] Room-Temperature van der Waals Ferromagnet Switching by Spin-Orbit Torques
    Li, Weihao
    Zhu, Wenkai
    Zhang, Gaojie
    Wu, Hao
    Zhu, Shouguo
    Li, Runze
    Zhang, Enze
    Zhang, Xiaomin
    Deng, Yongcheng
    Zhang, Jing
    Zhao, Lixia
    Chang, Haixin
    Wang, Kaiyou
    ADVANCED MATERIALS, 2023, 35 (51)
  • [37] Low-Power MRAM for Nonvolatile Electronics: Electric Field Control and Spin-Orbit Torques
    Amiri, Pedram Khalili
    Wang, Kang L.
    2014 IEEE 6TH INTERNATIONAL MEMORY WORKSHOP (IMW), 2014,
  • [38] Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers
    MacNeill, D.
    Stiehl, G. M.
    Guimaraes, M. H. D.
    Buhrman, R. A.
    Park, J.
    Ralph, D. C.
    NATURE PHYSICS, 2017, 13 (03) : 300 - +
  • [39] Irrelevance of magnetic proximity effect to spin-orbit torques in heavy-metal/ferromagnet bilayers
    Zhu, L. J.
    Ralph, D. C.
    Buhrman, R. A.
    PHYSICAL REVIEW B, 2018, 98 (13)
  • [40] Manipulation of Magnetization by Spin-Orbit Torque
    Li, Yucai
    Edmonds, Kevin William
    Liu, Xionghua
    Zheng, Houzhi
    Wang, Kaiyou
    ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (1-2)