Asymptotic windings of the block determinants of a unitary Brownian motion and related diffusions

被引:5
作者
Baudoin, Fabrice [1 ]
Wang, Jing [2 ]
机构
[1] Univ Connecticut, Storrs, CT 06269 USA
[2] Purdue Univ, W Lafayette, IN 47907 USA
关键词
asymptotic windings; asymptotic stochastic area; block determinants; Stiefel Brownian motion; Brownian motion of complex Grassmannian manifold; GEOMETRY;
D O I
10.1214/21-EJP600
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study several matrix diffusion processes constructed from a unitary Brownian motion. In particular, we use the Stiefel fibration to lift the Brownian motion of the complex Grassmannian to the complex Stiefel manifold and deduce a skew-product decomposition of the Stiefel Brownian motion. As an application, we prove asymptotic laws for the determinants of the block entries of the unitary Brownian motion.
引用
收藏
页数:21
相关论文
共 30 条
[11]  
Demni Nizar, 2010, ADV PURE APPL MATH, V1, P325
[12]   Some properties of the wishart processes and a matrix extension of the Hartman-Watson laws [J].
Donati-Martin, C ;
Doumerc, Y ;
Matsumoto, H ;
Yor, M .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2004, 40 (04) :1385-1412
[13]  
Doumerc Yan., 2005, THESIS TOULOUSE 3
[14]  
Dynkin E. B, 1966, IZV AKAD NAUK SSSR M, V30, P455
[15]  
DYNKIN EB, 1961, DOKL AKAD NAUK SSSR+, V141, P288
[16]  
Elworthy K. David, 2010, FRONT MATH
[17]  
Forrester Peter J., 2017, ARXIV170104505
[18]   Brownian motion in a Weyl chamber, non-colliding particles, and random matrices [J].
Grabiner, DJ .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1999, 35 (02) :177-204
[19]   Strong solutions of non-colliding particle systems [J].
Graczyk, Piotr ;
Malecki, Jacek .
ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19
[20]   Multidimensional Yamada-Watanabe theorem and its applications to particle systems [J].
Graczyk, Piotr ;
Malecki, Jacek .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (02)