Asymptotic windings of the block determinants of a unitary Brownian motion and related diffusions

被引:5
作者
Baudoin, Fabrice [1 ]
Wang, Jing [2 ]
机构
[1] Univ Connecticut, Storrs, CT 06269 USA
[2] Purdue Univ, W Lafayette, IN 47907 USA
关键词
asymptotic windings; asymptotic stochastic area; block determinants; Stiefel Brownian motion; Brownian motion of complex Grassmannian manifold; GEOMETRY;
D O I
10.1214/21-EJP600
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study several matrix diffusion processes constructed from a unitary Brownian motion. In particular, we use the Stiefel fibration to lift the Brownian motion of the complex Grassmannian to the complex Stiefel manifold and deduce a skew-product decomposition of the Stiefel Brownian motion. As an application, we prove asymptotic laws for the determinants of the block entries of the unitary Brownian motion.
引用
收藏
页数:21
相关论文
共 30 条
[1]  
[Anonymous], 2007, ALEA-Lat. Am. J. Prob. Math. Stat
[2]  
Assiotis Theodoros, 2016, ARXIV160707182
[3]   SUB-RIEMANNIAN GEOMETRY OF STIEFEL MANIFOLDS [J].
Autenried, Christian ;
Markina, Irina .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (02) :939-959
[4]   Integration by parts and quasi-invariance for the horizontal Wiener measure on foliated compact manifolds [J].
Baudoin, Fabrice ;
Feng, Qi ;
Gordina, Maria .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (05) :1362-1422
[5]   Stochastic areas, winding numbers and Hopf fibrations [J].
Baudoin, Fabrice ;
Wang, Jing .
PROBABILITY THEORY AND RELATED FIELDS, 2017, 169 (3-4) :977-1005
[6]  
Baudoin Fabrice., 2016, EMS Ser. Lect. Math., V1, P259
[7]  
Besse Arthur L, 1987, ERGEBNISSE MATH IHRE, V10
[8]   The spectral edge of unitary Brownian motion [J].
Collins, Benoit ;
Dahlqvist, Antoine ;
Kemp, Todd .
PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (1-2) :49-93
[9]   Moments of the Hermitian Matrix Jacobi Process [J].
Deleaval, Luc ;
Demni, Nizar .
JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (03) :1759-1778
[10]   Free Jacobi process [J].
Demni, N. .
JOURNAL OF THEORETICAL PROBABILITY, 2008, 21 (01) :118-143