Ultrasound-enhanced mass transfer during the growth and dissolution of surface gas bubbles

被引:8
作者
Penas, Pablo [1 ,2 ]
Soto, Alvaro Moreno [3 ]
Lohse, Detlef [1 ,2 ]
Lajoinie, Guillaume [1 ,2 ]
van der Meer, Devaraj [1 ,2 ]
机构
[1] Univ Twente, Phys Fluids Grp, Max Planck Ctr Twente Complex Fluid Dynam, Dept Sci & Technol,MESA Inst, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, JM Burgers Ctr Fluid Dynam, POB 217, NL-7500 AE Enschede, Netherlands
[3] MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Gas bubble; Ultrasound; Mass transfer; Diffusive growth; Dissolution; Acoustic microstreaming; RECTIFIED DIFFUSION; CAVITATION; LIQUID; MICROFLUIDICS; OSCILLATIONS;
D O I
10.1016/j.ijheatmasstransfer.2021.121069
中图分类号
O414.1 [热力学];
学科分类号
摘要
Proper understanding and control of the mass transfer capability of acoustically driven gas bubbles is crucial for the safety of biomedical applications and the efficiency of many electrochemical processes. Here, we quantify experimentally the effect of ultrasound on the rate of dissolution and growth of a gas bubble in contact with a solid surface, focusing on the dynamics of the bubble radius on the diffusive time scale. Significant degrees of super- or undersaturation of the surrounding carbonated water ensure that acoustic microstreaming stands as the predominant mechanism behind the mass-transfer enhancement across the bubble surface during resonance. Single-frequency acoustic driving can momentarily amplify the rate of mass transfer by as much as two orders of magnitude; the overall mass transfer enhancement increases monotonically with the acoustic pressure amplitude and eventually plateaus. Frequency sweeps continuously looped in time prove a superior method of intensification. Provided that the sweep period is not too short, the direction of sweep matters: up-sweeps generally favour dissolution over growth, whereas down-sweeps favour growth over dissolution. An optimal sweep period that maximises the growth or dissolution process is shown to exist. (C) 2021 The Author(s). Published by Elsevier Ltd.
引用
收藏
页数:12
相关论文
共 48 条