Dynamical thermalization of disordered nonlinear lattices

被引:51
作者
Mulansky, Mario [1 ]
Ahnert, Karsten [1 ]
Pikovsky, Arkady [1 ,2 ]
Shepelyansky, Dima L. [2 ,3 ]
机构
[1] Univ Potsdam, Dept Phys & Astron, D-14476 Potsdam, Germany
[2] Univ Toulouse, Phys Theor Lab, IRSAMC, UPS, F-31062 Toulouse, France
[3] CNRS, LPT, IRSAMC, F-31062 Toulouse, France
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 05期
关键词
chaos; entropy; lattice theory; nonlinear dynamical systems; INTRABAND DISCRETE BREATHERS; ANDERSON LOCALIZATION; QUANTUM CHAOS; TRANSPORT; SYSTEMS; DELOCALIZATION; WAVES;
D O I
10.1103/PhysRevE.80.056212
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study numerically how the energy spreads over a finite disordered nonlinear one-dimensional lattice, where all linear modes are exponentially localized by disorder. We establish emergence of dynamical thermalization characterized as an ergodic chaotic dynamical state with a Gibbs distribution over the modes. Our results show that the fraction of thermalizing modes is finite and grows with the nonlinearity strength.
引用
收藏
页数:5
相关论文
共 32 条
[1]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[2]  
[Anonymous], 1955, Los Alamos Report
[3]   Direct observation of Anderson localization of matter waves in a controlled disorder [J].
Billy, Juliette ;
Josse, Vincent ;
Zuo, Zhanchun ;
Bernard, Alain ;
Hambrecht, Ben ;
Lugan, Pierre ;
Clement, David ;
Sanchez-Palencia, Laurent ;
Bouyer, Philippe ;
Aspect, Alain .
NATURE, 2008, 453 (7197) :891-894
[4]   Threshold for Chaos and Thermalization in the One-Dimensional Mean-Field Bose-Hubbard Model [J].
Cassidy, Amy C. ;
Mason, Douglas ;
Dunjko, Vanja ;
Olshanii, Maxim .
PHYSICAL REVIEW LETTERS, 2009, 102 (02)
[5]   Spectral properties of quantum N-body systems versus chaotic properties of their mean-field approximations [J].
Castiglione, P ;
JonaLasinio, G ;
Presilla, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (19) :6169-6182
[6]   QUANTUM CHAOS - LOCALIZATION VS ERGODICITY [J].
CHIRIKOV, BV ;
IZRAILEV, FM ;
SHEPELYANSKY, DL .
PHYSICA D, 1988, 33 (1-3) :77-88
[7]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[8]   Effect of phonon-phonon interactions on localization [J].
Dhar, Abhishek ;
Lebowitz, J. L. .
PHYSICAL REVIEW LETTERS, 2008, 100 (13)
[9]  
Fermi E., 1965, Collected papers of Enrico-Fermi, V2, P978
[10]   TEMPORAL CROSSOVER FROM CLASSICAL TO QUANTAL BEHAVIOR NEAR DYNAMIC CRITICAL-POINTS [J].
FISHMAN, S ;
GREMPEL, DR ;
PRANGE, RE .
PHYSICAL REVIEW A, 1987, 36 (01) :289-305