OPTIMAL CONVEX COMBINATIONS BOUNDS OF CENTROIDAL AND HARMONIC MEANS FOR WEIGHTED GEOMETRIC MEAN OF LOGARITHMIC AND IDENTRIC MEANS

被引:0
作者
Matejicka, Ladislav [1 ]
机构
[1] Trencin Univ Alexander Dubcek Trencin, Fac Ind Technol Puchov, Puchov 02001, Slovakia
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2014年 / 8卷 / 04期
关键词
Convex combinations bounds; centroidal mean; harmonic mean; weighted geometric mean; logarithmic mean; identric mean;
D O I
10.7153/jmi-08-71
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, optimal convex combination bounds of centroidal and harmonic means for weighted geometric mean of logarithmic and identric means are proved. We find the greatest value lambda(alpha) and the least value Delta(alpha) for each alpha is an element of (0,1) such that the double inequality: lambda C(a, b) + (1 - lambda) H(a, b) < L-alpha (a, b)I1-alpha(a, b) < Delta C(a, b) + (1 - Delta)H(a, b) holds for all a, b > 0 with a not equal b. Here, C(a, b), H(a, b), L(a, b) and I(a, b) denote centroidal, harmonic, logarithmic and identric means of two positive numbers a and b, respectively.
引用
收藏
页码:939 / 945
页数:7
相关论文
共 12 条
[1]   Inequalities for means in two variables [J].
Alzer, H ;
Qiu, SL .
ARCHIV DER MATHEMATIK, 2003, 80 (02) :201-215
[2]  
BULLEN P. S., 1958, MEANS THEIR INEQUALI
[3]   LOGARITHMIC MEAN [J].
CARLSON, BC .
AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (06) :615-&
[4]  
Chu YM, 2013, B IRAN MATH SOC, V39, P259
[5]  
GAO SHAOQIN, 2011, INT J PURE APPL MATH, V70, P701
[6]   Functional equations involving the logarithmic mean [J].
Kahlig, P ;
Matkowski, J .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 (07) :385-390
[7]  
MATEJICKA L., J INEQUAL APPL
[8]  
PITINGER A. O., 1985, AM MATH MONTHLY, V92, P99
[9]  
Polya G., 1951, ANN MATH STUD, V27
[10]  
SEIFFERT W., NIEUW ARCHIEF WISKUN, V11, P176