On the Complexity Landscape of the Domination Chain

被引:7
|
作者
Bazgan, Cristina [1 ,2 ]
Brankovic, Ljiljana [3 ]
Casel, Katrin [4 ]
Fernau, Henning [4 ]
机构
[1] Inst Univ France, Paris, France
[2] Univ Paris 09, PSL, LAMSADE UMR CNRS 7243, F-75775 Paris 16, France
[3] Univ Newcastle, Callaghan, NSW 2308, Australia
[4] Univ Trier, Fachbereich 4, Informat Wissensch, D-54286 Trier, Germany
来源
ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016 | 2016年 / 9602卷
关键词
VERTEX COVER; UPPER-BOUNDS; APPROXIMATION; PARAMETERS; INDEPENDENCE; ALGORITHMS; APPROXIMABILITY; IRREDUNDANCE; OPTIMIZATION; HARDNESS;
D O I
10.1007/978-3-319-29221-2_6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we survey and supplement the complexity landscape of the domination chain parameters as a whole, including classifications according to approximability and parameterised complexity. Moreover, we provide clear pointers to yet open questions. As this posed the majority of hitherto unsettled problems, we focus on Upper IRREDUNDANCE and LOWER IRREDUNDANCE that correspond to finding the largest irredundant set and resp. the smallest maximal irredundant set. The problems are proved NP-hard even for planar cubic graphs. While LOWER IRREDUNDANCE is proved not c log(n)-approximable in polynomial time unless NP subset of DTIME(n(log log n)), no such result is known for Upper Irredundance. Their complementary versions are constantfactor approximable in polynomial time. All these four versions are APXhard even on cubic graphs.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条
  • [41] A Boundary Property for Upper Domination
    AbouEisha, Hassan
    Hussain, Shahid
    Lozin, Vadim
    Monnot, Jerome
    Ries, Bernard
    Zamaraev, Viktor
    Combinatorial Algorithms, 2016, 9843 : 229 - 240
  • [42] A note on double domination in graphs
    Cabrera-Martinez, Abel
    Alberto Rodriguez-Velazquez, Juan
    DISCRETE APPLIED MATHEMATICS, 2021, 300 : 107 - 111
  • [43] Exploring Complexity in Sustainable Biomass Supply Chain Management
    Ricardo Saavedra, M. M.
    Fontes, Cristiano H. de O.
    Soler, Viviana A. T.
    Freires, Francisco Gaudencio M.
    INDUSTRIAL ENGINEERING AND OPERATIONS MANAGEMENT II, IJCIEOM, 2019, 281 : 231 - 242
  • [44] On a Conjecture about Inverse Domination in Graphs
    Frendrup, Allan
    Henning, Michael A.
    Randerath, Bert
    Vestergaard, Preben Dahl
    ARS COMBINATORIA, 2010, 97A : 129 - 143
  • [45] THE DIFFERENTIAL AND THE ROMAN DOMINATION NUMBER OF A GRAPH
    Bermudo, Sergio
    Fernau, Henning
    Sigarreta, Jose M.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2014, 8 (01) : 155 - 171
  • [46] A Dichotomy for Upper Domination in Monogenic Classes
    AbouEisha, Hassan
    Hussain, Shahid
    Lozin, Vadim
    Monnot, Jerome
    Ries, Bernard
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2014), 2014, 8881 : 258 - 267
  • [47] Complexity and approximation of the Constrained Forest problem
    Bazgan, Cristina
    Couetoux, Basile
    Tuza, Zsolt
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (32) : 4081 - 4091
  • [48] ON THE COMPLEXITY OF MAPPING LINEAR CHAIN APPLICATIONS ONTO HETEROGENEOUS PLATFORMS
    Benoit, Anne
    Robert, Yves
    Thierry, Eric
    PARALLEL PROCESSING LETTERS, 2009, 19 (03) : 383 - 397
  • [49] Independent domination versus weighted independent domination
    Lozin, Vadim
    Malyshev, Dmitriy
    Mosca, Raffaele
    Zamaraev, Viktor
    INFORMATION PROCESSING LETTERS, 2020, 156
  • [50] A characterization of trees with equal domination and total domination numbers
    Hou, Xinmin
    ARS COMBINATORIA, 2010, 97A : 499 - 508